首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Embryonic stem cells (ESCs) can self-renew indefinitely while maintaining the ability to generate all three germ-layer derivatives.Despite the importance of ESCs in developmental biology and their potential impact on regenerative medicine,the molecular mechanisms controlling ESC behavior are incompletely understood.Previously,activation of the canonical Wnt signaling pathway has been shown to contribute to mouse ESC self-renewal.Here we report that ectopic expression of Lef1,a component of the Wnt signaling pathway,has a positive effect on the self-renewal of mouse ESCs.Lef1 up-regulates Oct4 promoter activity and physically interacts with Nanog,two key components of the ESC pluripotency machinery.Moreover,siRNA for Lef1 induced mouse ESC differentiation.Our results thus suggest that in response to Wnt signaling Lef1 binds to stabilized β-catenin and helps maintain the undifferentiated status of ESCs through modulation of Oct4 and Nanog.  相似文献   

3.
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.  相似文献   

4.
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.  相似文献   

5.
Sox2 is a key factor in maintaining self-renewal of embryonic stem cells (ESCs) and adult stem cells as well as in reprogramming differentiated cells back into pluripotent or multipotent stem cells. Although previous studies have shown that Sox2 is phosphorylated in human ESCs, the biological significance of Sox2 phosphorylation in ESC maintenance and reprogramming has not been well understood. In this study we have identified new phosphorylation sites on Sox2 and have further demonstrated that Cdk2-mediated Sox2 phosphorylation at Ser-39 and Ser-253 is required for establishing the pluripotent state during reprogramming but is dispensable for ESC maintenance. Mass spectrometry analysis of purified Sox2 protein has identified new phosphorylation sites on two tyrosine and six serine/Threonine residues. Cdk2 physically interacts with Sox2 and phosphorylates Sox2 at Ser-39 and Ser-253 in vitro. Surprisingly, Sox2 phosphorylation at Ser-39 and Ser-253 is dispensable for ESC self-renewal and cell cycle progression. In addition, Sox2 phosphorylation enhances its ability to establish the pluripotent state during reprogramming by working with Oct4 and Klf4. Finally, Cdk2 can also modulate the ability of Oct4, Sox2, and Klf4 in reprogramming fibroblasts back into pluripotent stem cells. Therefore, this study has for the first time demonstrated that Sox2 phosphorylation by Cdk2 promotes the establishment but not the maintenance of the pluripotent state. It might also help explain why the inactivation of CDK inhibitors such as p53, p21, and Arf/Ink4 promotes the induction of pluripotent stem cells.  相似文献   

6.
Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor.  相似文献   

7.
8.
Embryonic stem cells (ESCs) are prone to differentiation in culture, suggesting that maintenance of the pluripotent state must be actively induced. In a recent issue of Nature, Ying et al. (2008) use soluble small molecules to inhibit pro-differentiation signals and reveal ESC self-renewal as a default cell fate.  相似文献   

9.
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.  相似文献   

10.
Zhang W  Yao H  Wang S  Shi S  Lv Y  He L  Nan X  Yue W  Li Y  Pei X 《Cell biology international》2012,36(3):267-271
The Wnt/β-catenin signalling pathway is important in regulating not only self-renewal of haemopoietic progenitors and stem cells but also haemopoietic differentiation of ESCs (embryonic stem cells). However, it is still not clear how it affects haemopoietic differentiation. We have used a co-culture system for haemopoietic differentiation of mouse ESCs and iPSCs (induced pluripotent stem cells) in which the Wnt3a gene-modified OP9 cell line is used as stromal cells. The number of both Flk1+ and CD41+ cells generated from both co-cultured mouse ESCs and mouse iPSCs increased significantly, which suggest that Wnt3a is involved in the early stages of haemopoietic differentiation of mouse ESCs and mouse iPSCs in vitro.  相似文献   

11.
12.
13.
The co-occupancy of Tcf3 with Oct4, Sox2 and Nanog on embryonic stem cell (ESC) chromatin indicated that Tcf3 has been suggested to play an integral role in a poorly understood mechanism underlying Wnt-dependent stimulation of mouse ESC self-renewal of mouse ESCs. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signalling suggested Tcf3-β-catenin activation of target genes would stimulate self-renewal, here we show that an antagonistic relationship between Wnt3a and Tcf3 on gene expression regulates ESC self-renewal. Genetic ablation of Tcf3 replaced the requirement for exogenous Wnt3a or GSK3 inhibition for ESC self-renewal, demonstrating that inhibition of Tcf3 repressor is the necessary downstream effect of Wnt signalling. Interestingly, both Tcf3-β-catenin and Tcf1-β-catenin interactions contributed to Wnt stimulation of self-renewal and gene expression, and the combination of Tcf3 and Tcf1 recruited Wnt-stabilized β-catenin to Oct4 binding sites on ESC chromatin. This work elucidates the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network.  相似文献   

14.
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.  相似文献   

15.
Wang S  Shen Y  Yuan X  Chen K  Guo X  Chen Y  Niu Y  Li J  Xu RH  Yan X  Zhou Q  Ji W 《The Journal of biological chemistry》2008,283(51):35929-35940
The pluripotency and self-renewal of embryonic stem cells (ESC) are regulated by a variety of cytokines/growth factors with some species differences. We reported previously that rabbit ESC (rESC) are more similar to primate ESC than to mouse ESC. However, the signaling pathways that regulate rESC self-renewal had not been identified. Here we show that inhibition of the transforming growth factor beta (TGFbeta), fibroblast growth factor (FGF), and canonical Wnt/beta-catenin (Wnt) pathways results in enhanced differentiation of rESC accompanied by down-regulation of Smad2/3 phosphorylation and beta-catenin expression and up-regulation of phosphorylation of Smad1 and beta-catenin. These results imply that the TGFbeta, FGF, and Wnt pathways are required for rESC self-renewal. Inhibition of the MAPK/ERK and PI3K/AKT pathways, which lie downstream of the FGF pathway, led to differentiation of rESC accompanied by down-regulation of phosphorylation of ERK1/2 or AKT, respectively. Long-term self-renewal of rESC could be achieved by adding a mixture of TGFbeta ligands (activin A, Nodal, or TGFbeta1) plus basic FGF (bFGF) and Noggin in the absence of serum and feeder cells. Our findings also suggest that there is a regulatory network consisting of the FGF, Wnt, and TGFbeta pathways that controls rESC pluripotency and self-renewal. We conclude that bFGF controls the stem cell properties of rESC both directly and indirectly through TGFbeta or other pathways, whereas the effect of Wnt on rESC might be mediated by the TGFbeta pathway.  相似文献   

16.
17.
Nucleostemin (NS) is a nucleolar GTP-binding protein that was first identified in neural stem cells, the functions of which remain poorly understood. Here, we report that NS is required for mouse embryogenesis to reach blastulation, maintenance of embryonic stem cell (ESC) self-renewal, and mammary epithelial cell (MEC) reprogramming to induced pluripotent stem (iPS) cells. Ectopic NS also cooperates with OCT4 and SOX2 to reprogram MECs and mouse embryonic fibroblasts to iPS cells. NS promotes ESC self-renewal by sustaining rapid transit through the G1 phase of the cell cycle. Depletion of NS in ESCs retards transit through G1 and induces gene expression changes and morphological differentiation through a mechanism that involves the MEK/ERK protein kinases and that is active only during a protracted G1. Suppression of cell cycle inhibitors mitigates these effects. Our results implicate NS in the maintenance of ESC self-renewal, demonstrate the importance of rapid transit through G1 for this process, and expand the known classes of reprogramming factors.  相似文献   

18.
Signaling pathways orchestrated by PI3K/Akt, Raf/Mek/Erk and Wnt/β-catenin are known to play key roles in the self-renewal and differentiation of pluripotent stem cells. The serine/threonine protein kinase Gsk3β has roles in all three pathways, making its exact function difficult to decipher. Consequently, conflicting reports have implicated Gsk3β in promoting self-renewal, while others suggest that it performs roles in the activation of differentiation pathways. Different thresholds of Gsk3β activity also have different biological effects on pluripotent cells, making this situation even more complex. Here, we describe a further level of complexity that is most apparent when comparing “naïve” murine and “primed” human pluripotent stem cells. In naïve cells, Gsk3β activity is restrained by PI3K/Akt, but when released from inhibitory signals it antagonizes self-renewal pathways by targeting pluripotency factors such as Myc and Nanog. This situation also applies in primed cells, but, in addition, a separate pool of Gsk3β is required to suppress canonical Wnt signaling. These observations suggest that different Gsk3β-protein complexes shift the balance between naïve and primed pluripotent cells and identify fundamental differences in their cell signaling. Altogether, these findings have important implications for the mechanisms underpinning the establishment of different pluripotent cell states and for the control of self-renewal and differentiation.  相似文献   

19.
Li X  Zhu L  Yang A  Lin J  Tang F  Jin S  Wei Z  Li J  Jin Y 《Cell Stem Cell》2011,8(1):46-58
Self-renewal and pluripotency are hallmarks of embryonic stem cells (ESCs). However, the signaling pathways that trigger their transition from self-renewal to differentiation remain elusive. Here, we report that calcineurin-NFAT signaling is both necessary and sufficient to switch ESCs from an undifferentiated state to lineage-specific cells and that the inhibition of this pathway can maintain long-term ESC self-renewal independent of leukemia inhibitory factor. Mechanistically, this pathway converges with the Erk1/2 pathway to regulate Src expression and promote the epithelial-mesenchymal transition (EMT), a process required for lineage specification in response to differentiation stimuli. Furthermore, calcineurin-NFAT signaling is activated when the earliest differentiation event occurs in mouse embryos, and its inhibition disrupts extraembryonic lineage development. Collectively, our results demonstrate that the NFAT and Erk1/2 cascades form a signaling switch for early lineage segregation in mouse ESCs and provide significant insights into the regulation of the balance between ESC self-renewal and early lineage specification.  相似文献   

20.
Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号