首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

2.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

3.
In Escherichia coli, three cysteine desulfurases (IscS, SufS, and CsdA) initiate the delivery of sulfur for various biological processes such as the biogenesis of Fe-S clusters. The sulfur generated as persulfide on a cysteine residue of cysteine desulfurases is further transferred to Fe-S scaffolds (e.g. IscU) or to intermediate cysteine-containing sulfur acceptors (e.g. TusA, SufE, and CsdE) prior to its utilization. Here, we report the structures of CsdA and the CsdA-CsdE complex, which provide insight into the sulfur transfer mediated by the trans-persulfuration reaction. Analysis of the structures indicates that the conformational flexibility of the active cysteine loop in CsdE is essential for accepting the persulfide from the cysteine of CsdA. Additionally, CsdA and CsdE invoke a different binding mode than those of previously reported cysteine desulfurase (IscS) and sulfur acceptors (TusA and IscU). Moreover, the conservation of interaction-mediating residues between CsdA/SufS and CsdE/SufE further suggests that the SufS-SufE interface likely resembles that of CsdA and CsdE.  相似文献   

4.
Cysteine desulfurase plays a principal role in the assembly of iron-sulfur clusters by mobilizing the sulfur atom of L-cysteine. The active site cysteine residue of the enzyme attacks the sulfur atom of L-cysteine to form a cysteine persulfide residue, and the substrate-derived sulfur atom of this residue is incorporated into iron-sulfur clusters. Escherichia coli has three cysteine desulfurases named IscS, CsdB and CSD. We found that each of them facilitates the formation of the iron-sulfur cluster of ferredoxin in vitro. Since IscU, an iron-sulfur protein of E. coli, is believed to function as a scaffold for the cluster assembly in vivo, we examined whether IscS, CsdB and CSD interact with IscU to deliver the sulfur atom to IscU. By surface plasmon resonance analysis, we found that only IscS interacts with IscU. We isolated the IscS/IscU complex, determined the residues involved in the formation of the complex, and obtained data suggesting that the sulfur transfer from IscS to IscU is initiated by the attack of Cys63 of IscU on the S gamma atom of the cysteine persulfide residue transiently produced on IscS.  相似文献   

5.
6.
The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.  相似文献   

7.
The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase, where it also mediates interdomain interactions. Therefore, the core fold of SufE/IscU has been adapted to mediate interdomain interactions in diverse redox protein systems in the course of evolution.  相似文献   

8.
Smith AD  Frazzon J  Dean DR  Johnson MK 《FEBS letters》2005,579(23):5236-5240
The role of the three conserved cysteine residues on Azotobacter vinelandii IscU in accepting sulfane sulfur and forming a covalent complex with IscS has been evaluated using electrospray-ionization mass spectrometry studies of variants involving individual cysteine-to-alanine substitutions. The results reveal that IscS can transfer sulfur to each of the three alanine-substituted forms of IscU to yield persulfide or polysulfide species, and formation of a heterodisulfide covalent complex between IscS and Cys(37) on IscU. It is concluded that S transfer from IscS to IscU does not involve a specific cysteine on IscU or the formation of an IscS-IscU heterodisulfide complex.  相似文献   

9.
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.  相似文献   

10.
AtNfs1 is the Arabidopsis thaliana mitochondrial homolog of the bacterial cysteine desulfurases NifS and IscS, having an essential role in cellular Fe-S cluster assembly. Homology modeling of AtNfs1m predicts a high global similarity with E. coli IscS showing a full conservation of residues involved in the catalytic site, whereas the chloroplastic AtNfs2 is more similar to the Synechocystis sp. SufS. Pull-down assays showed that the recombinant mature form, AtNfs1m, specifically binds to Arabidopsis frataxin (AtFH). A hysteretic behavior, with a lag phase of several minutes, was observed and hysteretic parameters were affected by pre-incubation with AtFH. Moreover, AtFH modulates AtNfs1m kinetics, increasing V (max) and decreasing the S (0.5) value for cysteine. Results suggest that AtFH plays an important role in the early steps of Fe-S cluster formation by regulating AtNfs1 activity in plant mitochondria.  相似文献   

11.
The biogenesis of iron-sulfur [Fe-S] clusters requires the coordinated delivery of both iron and sulfide. Sulfide is provided by cysteine desulfurases that use L-cysteine as sulfur source. So far, the physiological iron donor has not been clearly identified. CyaY, the bacterial ortholog of frataxin, an iron binding protein thought to be involved in iron-sulfur cluster formation in eukaryotes, is a good candidate because it was shown to bind iron. Nevertheless, no functional in vitro studies showing an involvement of CyaY in [Fe-S] cluster biosynthesis have been reported so far. In this paper we demonstrate for the first time a specific interaction between CyaY and IscS, a cysteine desulfurase participating in iron-sulfur cluster assembly. Analysis of the iron-loaded CyaY protein demonstrated a strong binding of Fe(3+) and a weak binding of Fe(2+) by CyaY. Biochemical analysis showed that the CyaY-Fe(3+) protein corresponds to a mixture of monomer, intermediate forms (dimer-pentamers), and oligomers with the intermediate one corresponding to the only stable and soluble iron-containing form of CyaY. Using spectroscopic methods, this form was further demonstrated to be functional in vitro as an iron donor during [Fe-S] cluster assembly on the scaffold protein IscU in the presence of IscS and cysteine. All of these results point toward a link between CyaY and [Fe-S] cluster biosynthesis, and a possible mechanism for the process is discussed.  相似文献   

12.
After heterologous expression in Escherichia coli, the Azotobacter vinelandii rhodanese RhdA is purified in a persulfurated form (RhdA-SSH). We identified l-cysteine as the most effective sulfur source in producing RhdA-SSH. An E. coli soluble extract was required for in vitro persulfuration of RhdA, and the addition of pyridoxal-5'-phosphate increased RhdA-SSH production, indicating a likely involvement of a cysteine desulfurase. We were able to show the formation of a covalent complex between IscS and RhdA. By combining a time-course fluorescence assay and mass spectrometry analysis, we demonstrated the transfer of sulfur from E. coli IscS to RhdA.  相似文献   

13.
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.  相似文献   

14.
The Bacillus subtilis narA locus was shown to include narQ and narA. The putative product of narQ is similar to FdhD, which is required for formate dehydrogenase activity in Escherichia coli. NarA showed homology to MoaA, a protein involved in biosynthesis of the molybdenum cofactor for nitrate reductase and formate dehydrogenase. Analysis of mutants showed that narA but not narQ is required for both nitrate assimilation and respiration.  相似文献   

15.
ThiI has been identified as an essential enzyme involved in the biosynthesis of thiamine and the tRNA thionucleoside modification, 4-thiouridine. In Escherichia coli and Salmonella enterica, ThiI acts as a sulfurtransferase, receiving the sulfur donated from the cysteine desulfurase IscS and transferring it to the target molecule or additional sulfur carrier proteins. However, in Bacillus subtilis and most species from the Firmicutes phylum, ThiI lacks the rhodanese domain that contains the site responsible for the sulfurtransferase activity. The lack of the gene encoding for a canonical IscS cysteine desulfurase and the presence of a short sequence of ThiI in these bacteria pointed to mechanistic differences involving sulfur trafficking reactions in both biosynthetic pathways. Here, we have carried out functional analysis of B. subtilis thiI and the adjacent gene, nifZ, encoding for a cysteine desulfurase. Gene inactivation experiments in B. subtilis indicate the requirement of ThiI and NifZ for the biosynthesis of 4-thiouridine, but not thiamine. In vitro synthesis of 4-thiouridine by ThiI and NifZ, along with labeling experiments, suggests the occurrence of an alternate transient site for sulfur transfer, thus obviating the need for a rhodanese domain. In vivo complementation studies in E. coli IscS- or ThiI-deficient strains provide further support for specific interactions between NifZ and ThiI. These results are compatible with the proposal that B. subtilis NifZ and ThiI utilize mechanistically distinct and mutually specific sulfur transfer reactions.  相似文献   

16.
17.
18.
Xu XM  Møller SG 《The EMBO journal》2006,25(4):900-909
Iron-sulfur (Fe-S) clusters are vital prosthetic groups for Fe-S proteins involved in fundamental processes such as electron transfer, metabolism, sensing and signaling. In plants, sulfur (SUF) protein-mediated Fe-S cluster biogenesis involves iron acquisition and sulfur mobilization, processes suggested to be plastidic. Here we have shown that AtSufE in Arabidopsis rescues growth defects in SufE-deficient Escherichia coli. In contrast to other SUF proteins, AtSufE localizes to plastids and mitochondria interacting with the plastidic AtSufS and mitochondrial AtNifS1 cysteine desulfurases. AtSufE activates AtSufS and AtNifS1 cysteine desulfurization, and AtSufE activity restoration in either plastids or mitochondria is not sufficient to rescue embryo lethality in AtSufE loss-of-function mutants. AtSufE overexpression induces AtSufS and AtNifS1 expression, which in turn leads to elevated cysteine desulfurization activity, chlorosis and retarded development. Our data demonstrate that plastidic and mitochondrial Fe-S cluster biogenesis shares a common, essential component, and that AtSufE acts as an activator of plastidic and mitochondrial desulfurases in Arabidopsis.  相似文献   

19.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

20.
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S0)- and tetrathionate (S4O62−)-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys18-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys18) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C93S and DsrE3A-C101S retained the ability to transfer the thiosulfonate group to TusA. TusA-C18S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号