首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored. In this study we detected miRNA expression patterns in colon tissues during colitis and investigated the mechanism underlying the regulation of colonic PepT1 by miRNAs. We observed an inverse correlation between PepT1 and miR-193a-3p in inflamed colon tissues with active ulcerative colitis, and we further demonstrated that miR-193a-3p reduced PepT1 expression and activity as a target gene and subsequently suppressed the NF-κB pathway. Intracolonic delivery of miR-193a-3p significantly ameliorated dextran sodium sulfate-induced colitis, whereas the overexpression of colonic PepT1 via PepT1 3′-untranslated region mutant lentivirus vector abolished the anti-inflammatory effect of miR-193a-3p. Furthermore, antibiotic treatment eliminated the difference in the dextran sodium sulfate-induced inflammation between the presence and absence of miR-193a-3p. These findings suggest that miR-193a-3p regulation of PepT1 mediates the uptake of bacterial products and is a potent mechanism during the colonic inflammation process. Overall, we believe miR-193a-3p may be a potent regulator of colonic PepT1 for maintaining intestinal homeostasis.  相似文献   

2.
The transporter PepT1, apically expressed in intestinal epithelial cells, is responsible for the uptake of di/tripeptides. PepT1 is also expressed in nonpolarized immune cells. Here we investigated the localization of PepT1 in lipid rafts in small intestinal brush border membranes (BBMs) and polarized and nonpolarized cells, as well as functional consequences of the association of PepT1 with lipid rafts. Immunoblot analysis showed the presence of PepT1 in low-density fractions isolated from mouse intestinal BBMs, polarized intestinal Caco2-BBE cells, and nonpolarized Jurkat cells by solubilization in ice-cold 0.5% Triton X-100 and sucrose gradient fractionation. PepT1 colocalized with lipid raft markers GM1 and N-aminopeptidase in intestinal BBMs and Caco2-BBE cell membranes. Disruption of lipid rafts with methyl-beta-cyclodextrin (MbetaCD) shifted PepT1 from low- to high-density fractions. Remarkably, we found that MbetaCD treatment increased PepT1 transport activity in polarized intestinal epithelia but decreased that in intestinal BBM vesicles and nonpolarized immune cells. Mutational analysis showed that phenylalanine 293, phenylalanine 297, and threonine 281 in transmembrane segment 7 of the human di/tripeptide transporter, hPepT1, are important for the targeting to lipid rafts and transport activity of hPepT1. In conclusion, the association of PepT1 with lipid rafts differently modulates its transport activity in polarized and nonpolarized cells.  相似文献   

3.
Some of the food-derived tripeptides with angiotensin converting enzyme (ACE)-inhibitory activity have been reported to be hypotensive after being orally administered. The mechanism for the intestinal transport of these tripeptides was studied by using monolayer-cultured human intestinal Caco-2 cells which express many enterocyte-like functions including the peptide transporter (PepT1)-mediated transport system. Val-Pro-Pro, an ACE-inhibitory peptide from fermented milk, was used as a model tripeptide. A significant amount of intact Val-Pro-Pro was transported across the Caco-2 cell monolayer. This transport was hardly inhibited by a competitive substrate for PepT1. Since no intact Val-Pro-Pro was detected in the cells, Val-Pro-Pro apically taken by Caco-2 cells via PepT1 was likely to have been quickly hydrolyzed by intracellular peptidases, producing free Val and Pro. These findings suggest that PepT1-mediated transport was not involved in the transepithelial transport of intact Val-Pro-Pro. Paracellular diffusion is suggested to have been the main mechanism for the transport of intact Val-Pro-Pro across the Caco-2 cell monolayer.  相似文献   

4.
The aetiology of Crohn's disease--a chronic intestinal disorder that involves an immune response against the commensal bacterial flora--remains fiercely debated. Two hypotheses exist: (i) those who think that the disease is caused by genetic defects that produce exaggerated innate responses to the flora, leading to excessive inflammation; and (ii) those who think that the genetic defects cause diminished inflammatory responses, in turn leading to uncontrolled accumulation of the inducer stimuli and, thus, activation of the adaptive immune system. Importantly, Marks and colleagues have recently investigated the immune response of Crohn's disease patients directly, convincingly showing impaired innate immunity.  相似文献   

5.
PepT1-mediated fMLP transport induces intestinal inflammation in vivo   总被引:5,自引:0,他引:5  
In the presentstudy, the effect of H+/peptide transporter(PepT1)-mediatedN-formylmethionyl-leucyl-phenylalanine (fMLP)transport on inflammation in vivo in the rat small intestine, whichexpresses high PepT1 levels, and in the rat colon, which does notexpress PepT1, were investigated using myeloperoxidase (MPO) activity and histological analysis. We found that 10 µM fMLP perfusion in thejejunum for 4 h significantly increased MPO activity and alteredthe architecture of jejunal villi. In contrast, 10 µM fMLP perfusionin the colon for 4 h did not induce any inflammation. In addition,we have shown that 50 mM Gly-Gly alone did not affect basal MPOactivity but completely inhibited the MPO activity induced by 10 µMfMLP in the jejunum. Together, these experiments demonstrate that1) the differential expression of PepT1 between the small intestine and the colon plays an important role inepithelial-neutrophil interactions and 2) the inhibition offMLP uptake by jejunal epithelial cells (expressing PepT1) reduces theneutrophil ability to move across the epithelium, in agreement with ourpreviously published in vitro study. This report constitutes the firstin vivo study showing the implication of a membrane transporter (PepT1)in intestinal inflammation.

  相似文献   

6.
Amino acids, a critical energy source for the intestinal epithelial cells, are more efficiently assimilated in the normal intestine via peptide co-transporters such as proton:dipeptide co-transport (such as PepT1). Active uptake of a non-hydrolyzable dipeptide (glycosarcosine) was used as a substrate and PepT1 was found to be present in normal villus, but not crypt cells. The mRNA for this transporter was also found in villus, but not crypt cells from the normal rabbit intestine. PepT1 was significantly reduced in villus cells also diminished in villus cell brush border membrane vesicles both from the chronically inflamed intestine. Kinetic studies demonstrated that the mechanism of inhibition of PepT1 during chronic enteritis was secondary to a decrease in the affinity of the co-transporter for the dipeptide without an alteration in the maximal rate of uptake (Vmax). Northern blot studies also demonstrated unaltered steady state mRNA levels of this transporter in the chronically inflamed intestine. Proton dipeptide transport is found in normal intestinal villus cells and is inhibited during chronic intestinal inflammation. The mechanism of inhibition is secondary to altered affinity of the co-transporter for the dipeptide.  相似文献   

7.
Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP) kinase and NF-κB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.  相似文献   

8.
The cloned intestinal peptide transporter is capable of electrogenic H+-coupled cotransport of neutral di- and tripeptides and selected peptide mimetics. Since the mechanism by which PepT1 transports substrates that carry a net negative or positive charge at neutral pH is poorly understood, we determined in Xenopus oocytes expressing PepT1 the characteristics of transport of differently charged glycylpeptides. Transport function of PepT1 was assessed by flux studies employing a radiolabeled dipeptide and by the two-electrode voltage-clamp-technique. Our studies show, that the transporter is capable of translocating all substrates by an electrogenic process that follows Michaelis Menten kinetics. Whereas the apparent K0.5 value of a zwitterionic substrate is only moderately affected by alterations in pH or membrane potential, K0.5 values of charged substrates are strongly dependent on both, pH and membrane potential. Whereas the affinity of the anionic dipeptide increased dramatically by lowering the pH, a cationic substrate shows only a weak affinity for PepT1 at all pH values (5.5–8.0). The driving force for uptake is provided mainly by the inside negative transmembrane electrical potential. In addition, affinity for proton interaction with PepT1 was found to depend on membrane potential and proton binding subsequently affects the substrate affinity. Furthermore, our studies suggest, that uptake of the zwitterionic form of a charged substrate contributes to overall transport and that consequently the stoichiometry of the flux-coupling ratios for peptide: H+/H3O+ cotransport may vary depending on pH. Received: 19 August 1996/Revised: 10 October 1996  相似文献   

9.
The innate immune system provides first-line defences in response to invading microorganisms and endogenous danger signals by triggering robust inflammatory and antimicrobial responses. However, innate immune sensing of commensal microorganisms in the intestinal tract does not lead to chronic intestinal inflammation in healthy individuals, reflecting the intricacy of the regulatory mechanisms that tame the inflammatory response in the gut. Recent findings suggest that innate immune responses to commensal microorganisms, although once considered to be harmful, are necessary for intestinal homeostasis and immune tolerance. This Review discusses recent findings that identify a crucial role for innate immune effector molecules in protection against colitis and colitis-associated colorectal cancer and the therapeutic implications that ensue.  相似文献   

10.
11.
The binding affinities of a number of amino-acid and peptide derivatives by the mammalian intestinal peptide transporter PepT1 were investigated, using the Xenopus laevis expression system. A series of blocked amino acids, namely N-acetyl-Phe (Ac-Phe), phe-amide (Phe-NH2), N-acetyl-Phe-amide (Ac-Phe-NH2) and the parent compound Phe, was compared for efficacy in inhibiting the uptake of the peptide [3H]-D-Phe-L-Gln. In an equivalent set of experiments, the blocked peptides Ac-Phe-Tyr, Phe-Tyr-NH2 and Ac-Phe-Tyr-NH2 were compared with the parent compound Phe-Tyr. Comparing amino acids and derivatives, only Ac-Phe was an effective inhibitor of peptide uptake (Ki = 1.81+/- 0.37 mM). Ac-Phe-NH2 had a very weak interaction with PepT1 (Ki = 16.8+/-5.64 mM); neither Phe nor Phe-NH2 interacted with PepT1 with measurable affinity. With the dipeptide and derivatives, unsurprisingly the highest affinity interaction was with Phe-Tyr (Ki = 0.10+/-0.04 mM). The blocked C-terminal peptide Phe-Tyr-NH2 also interacted with PepT1 with a relatively high affinity (Ki = 0.94+/-0.38 mM). Both Ac-Phe-Tyr and Ac-Phe-Tyr-NH2 interacted weakly with PepT1 (Ki = 8.41+/-0.11 and 9.97+/-4.01 mM, respectively). The results suggest that the N-terminus is the primary binding site for both dipeptides and tripeptides. Additional experiments with four stereoisomers of Ala-Ala-Ala support this conclusion, and lead us to propose that a histidine residue is involved in binding the C-terminus of dipeptides. In addition, a substrate binding model for PepT1 is proposed.  相似文献   

12.
13.
Microbes generate a vast array of different types of conserved structural components called pathogen-associated molecular patterns(PAMPs),which canbe recognized by cells of the innate immune system.This recognition of "nonself" signatures occurs through host pattern recognition receptors(PRRs),suggesting that microbial-derived signals are good targets for innate immunity to discriminate between self- and nonself.Such PAMP-PRR interactions trigger multiple but distinct downstream signaling cascades,subsequently leading to production of proinflammatory cytokines and interferons that tailor immune responses to particular microbes.Aberrant PRR signals have been associated with various inflammatory diseases and fine regulation of PRR signaling is essential for avoiding excessive inflammatory immune responses and maintaining immune homeostasis.In this review we summarize the ligands and signal transduction pathways of PRRs and highlight recent progress of the mechanisms involved in microbe-specific innate immune recognition during immune responses and inflammation,which may provide new targets for therapeutic intervention to the inflammatory disorders.  相似文献   

14.
Enteroaggregative Escherichia coli (EAEC) is an important cause of endemic and epidemic diarrheal disease worldwide. Although not classically considered an inflammatory pathogen in the style of Shigella and Salmonella species, clinical data from patients suggests that inflammatory responses may play an important role during EAEC disease. However, the specific role of inflammation during EAEC pathogenesis has not been investigated in detail. To better understand how EAEC may induce inflammation, we have focused our attention on the intimate interactions between EAEC and the host epithelium and the subsequent induction of host cell signaling events leading to innate immune responses. Here, we discuss our recent findings on the signaling pathway by which EAEC promotes transepithelial migration of polymorphonuclear leukocytes (PMNs), the role of aggregative adherence fimbriae in triggering this event and the implementation of human intestinal xenografts in immunodeficient mice for studying EAEC pathogenesis in vivo. Our findings suggest that EAEC shares conserved mechanisms of inducing PMN recruitment with other intestinal pathogens, providing new insight into the potential pathological consequences of EAEC-induced inflammation.  相似文献   

15.
Enteroaggregative Escherichia coli (EAEC) is an important cause of endemic and epidemic diarrheal disease worldwide. Although not classically considered an inflammatory pathogen in the style of Shigella and Salmonella species, clinical data from patients suggests that inflammatory responses may play an important role during EAEC disease. However, the specific role of inflammation during EAEC pathogenesis has not been investigated in detail. To better understand how EAEC may induce inflammation, we have focused our attention on the intimate interactions between EAEC and the host epithelium and the subsequent induction of host cell signaling events leading to innate immune responses. Here, we discuss our recent findings on the signaling pathway by which EAEC promotes transepithelial migration of polymorphonuclear leukocytes (PMNs), the role of aggregative adherence fimbriae in triggering this event and the implementation of human intestinal xenografts in immunodeficient mice for studying EAEC pathogenesis in vivo. Our findings suggest that EAEC shares conserved mechanisms of inducing PMN recruitment with other intestinal pathogens, providing new insight into the potential pathological consequences of EAEC-induced inflammation.  相似文献   

16.
Dietary amino acids can be transported into intestinal epithelial cells as di- and tripeptides by the action of the peptide transporter, PepT1 (SLC15A1). Expression of the chicken PepT1 (cPepT1) gene changes in response to dietary crude protein level; however, the molecular mechanism governing this regulation is unknown. This study analyzed the promoter region of the cPepT1 gene. Using deletion analysis, positive-acting (-314 to -261, -169 to -155, and -120 to -60) and negative-acting (-419 to -386 and -214 to -169) regions were mapped in transfected chick embryo fibroblasts (CEF). The addition of neither amino acids Phe, Arg, or Val, nor the dipeptides Gly-Sar (glycyl-sarcosine), Gly-Pro, Gly-Phe, Met-Pro, Met-Lys or Lys-Lys, had an effect on cPepT1 promoter activity in transfected CEF. The cPepT1 promoter was more active in CEF and primary chicken intestinal cells than in chicken liver cells. This study represents a functional characterization of the molecular regulation of the chicken PepT1 gene.  相似文献   

17.
Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.  相似文献   

18.
Toll receptors play a critical role in the rapid activation of innate immune responses to a variety of pathogens. In mammals, Toll-like receptors (TLR) have been found in both immune related cells and other cells. At present little is known about the participation of TLR in host defense mechanisms during parasitic infections. The aim of this study was to determine the expression of TLR2 and TLR4 genes in rat intestines during experimental hymenolepidosis. There is difference in expression of TLR2 and TLR4 genes in the colon and jejunum in uninfected rats: in the colon, mRNA of the examined TLR is present in much higher amounts than the jejunum, while the protein of the TLR also had a segmented specific distribution. In the jejunum isolated rats infected with Hymeolepis diminuta 6 and 8 days post infection (dpi), mRNA for TLR4 and TLR2 were significantly more strongly expressed in comparison with the uninfected controls. In the colon, a statistically significantly increased expression of TLR4 gene was observed only at 6 dpi, and at 8 dpi for the TLR2 gene. Moreover, we observed that during inflammation, the immunopositive cell number and the intensity of immunohistochemical staining (indicating the presence of TLR within intestinal epithelial cells), increased together with the duration of the infection period.  相似文献   

19.
Data from animal models and human inflammatory bowel diseases have implicated the ER (endoplasmic reticulum) stress pathway in intestinal inflammation. We have characterized the development of inflammation in Winnie mice in which ER stress arises due to a single missense mutation in the MUC2 mucin produced by intestinal goblet cells. This model has allowed us to explore the genesis of inflammation ensuing from a single gene polymorphism affecting secretory cells. In these mice, a proportion of MUC2 misfolds during biosynthesis, leading to ER stress and activation of the unfolded protein response. Winnie mice develop spontaneous complex progressive inflammation that is most severe in the distal colon. Inflammation involves TH1, TH2 and TH17 T-cells, with a progressive development of a TH17-dominated response, but also involves innate immunity, in a pattern not dissimilar to human colitis. Experimental inhibition of tolerance in this model severely exacerbates colitis, demonstrating active effective suppression of inflammation. Even though the misfolding of MUC2 is a consequence of an inherited mutation, as inflammation develops, the molecular markers of ER stress increase further and goblet cell pathology becomes worse, suggesting that inflammation itself exacerbates ER stress.  相似文献   

20.
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus(HIV) infection. Thus more attention and research work regarding the innate immune system—especially the role of monocytes and macrophages during early HIV-1 infection—is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection,and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example,monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets(classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号