共查询到20条相似文献,搜索用时 0 毫秒
1.
Upstream migration of Xylella fastidiosa via pilus-driven twitching motility 总被引:1,自引:0,他引:1
下载免费PDF全文

Meng Y Li Y Galvani CD Hao G Turner JN Burr TJ Hoch HC 《Journal of bacteriology》2005,187(16):5560-5567
Xylella fastidiosa is a xylem-limited nonflagellated bacterium that causes economically important diseases of plants by developing biofilms that block xylem sap flow. How the bacterium is translocated downward in the host plant's vascular system against the direction of the transpiration stream has long been a puzzling phenomenon. Using microfabricated chambers designed to mimic some of the features of xylem vessels, we discovered that X. fastidiosa migrates via type IV-pilus-mediated twitching motility at speeds up to 5 mum min(-1) against a rapidly flowing medium (20,000 mum min(-1)). Electron microscopy revealed that there are two length classes of pili, long type IV pili (1.0 to 5.8 mum) and short type I pili (0.4 to 1.0 mum). We further demonstrated that two knockout mutants (pilB and pilQ mutants) that are deficient in type IV pili do not twitch and are inhibited from colonizing upstream vascular regions in planta. In addition, mutants with insertions in pilB or pilQ (possessing type I pili only) express enhanced biofilm formation, whereas a mutant with an insertion in fimA (possessing only type IV pili) is biofilm deficient. 相似文献
2.
Luciana Cursino Yaxin Li Paulo A. Zaini Leonardo De La Fuente Harvey C. Hoch & Thomas J. Burr 《FEMS microbiology letters》2009,299(2):193-199
A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa . 相似文献
3.
Cursino L Galvani CD Athinuwat D Zaini PA Li Y De La Fuente L Hoch HC Burr TJ Mowery P 《Molecular plant-microbe interactions : MPMI》2011,24(10):1198-1206
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility. 相似文献
4.
Osiro D Colnago LA Otoboni AM Lemos EG de Souza AA Coletta Filho HD Machado MA 《FEMS microbiology letters》2004,236(2):313-318
Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X. fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap. 相似文献
5.
Two chemically defined media based on xylem fluid chemistry were developed for Xylella fastidiosa. These media were tested and compared to chemically defined media XDM2, XDM4 and XF-26. New media were evaluated for the Pierce's disease (PD) strain UCLA-PD. Our media either was similar to the concentration of some amino acids found in the xylem fluid of the PD-susceptible Vitis vinifera cv. Chardonnay (medium CHARD2) or incorporated the tripeptide glutathione found in xylem fluid composition (medium 3G10-R). CHARD2 and 3G10-R are among the simplest chemically defined media available. Xylem fluid chemistry-based media supported X. fastidiosa growth and especially stimulated aggregation and biofilm formation. 相似文献
6.
Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa
下载免费PDF全文

Xylella fastidiosa possesses both type I and type IV pili at the same cell pole. By use of a microfluidic device, the speed of twitching movement by wild-type cells on a glass surface against the flow direction of media was measured as 0.86 (standard error [SE], 0.04) microm min(-1). A type I pilus mutant (fimA) moved six times faster (4.85 [SE, 0.27] microm min(-1)) and a pilY1 mutant moved three times slower (0.28 [SE, 0.03] microm min(-1)) than wild-type cells. Type I pili slow the rate of movement, while the putative type IV pilus protein PilY1 is likely important for attachment to surfaces. 相似文献
7.
Paulo A. Zaini Leonardo De La Fuente Harvey C. Hoch & Thomas J. Burr 《FEMS microbiology letters》2009,295(1):129-134
Xylella fastidiosa is able to form biofilms within xylem vessels of many economically important crops. Vessel blockage is believed to be a major contributor to disease development caused by this bacterium. This report shows that Vitis riparia xylem sap increases growth rate and induces a characteristic biofilm architecture as compared with biofilms formed in PD2 and PW media. In addition, stable cultures could be maintained, frozen and reestablished in xylem sap. These findings are important as xylem sap provides a natural medium that facilitates the identification of virulence determinants of Pierce's disease. 相似文献
8.
Stereomicroscopic observations using oblique illuminations revealed the presence of two types of movement trails by Xylella fastidiosa strains (A- and G-genotypes) isolated from almond-leaf scorch samples on the surface of PW and PD3 culture media. The A-genotype strains showed curved motility trails, and the G-genotype strains showed straight motility trails. Haloes were found around some G-genotype colonies due to the excretion of unknown factors and (or) compounds, which might be related to bacterial surface motility. 相似文献
9.
10.
Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa 总被引:1,自引:0,他引:1
Patriquin GM Banin E Gilmour C Tuchman R Greenberg EP Poole K 《Journal of bacteriology》2008,190(2):662-671
Reducing iron (Fe) levels in a defined minimal medium reduced the growth yields of planktonic and biofilm Pseudomonas aeruginosa, though biofilm biomass was affected to the greatest extent and at FeCl3 concentrations where planktonic cell growth was not compromised. Highlighting this apparently greater need for Fe, biofilm growth yields were markedly reduced in a mutant unable to produce pyoverdine (and, so, deficient in pyoverdine-mediated Fe acquisition) at concentrations of FeCl3 that did not adversely affect biofilm yields of a pyoverdine-producing wild-type strain. Concomitant with the reduced biofilm yields at low Fe concentrations, P. aeruginosa showed enhanced twitching motility in Fe-deficient versus Fe-replete minimal media. A mutant deficient in low-Fe-stimulated twitching motility but normal as regards twitching motility on Fe-rich medium was isolated and shown to be disrupted in rhlI, whose product is responsible for synthesis of the N-butanoyl homoserine lactone (C4-HSL) quorum-sensing signal. In contrast to wild-type cells, which formed thin, flat, undeveloped biofilms in Fe-limited medium, the rhlI mutant formed substantially developed though not fully mature biofilms under Fe limitation. C4-HSL production increased markedly in Fe-limited versus Fe-rich P. aeruginosa cultures, and cell-free low-Fe culture supernatants restored the twitching motility of the rhlI mutant on Fe-limited minimal medium and stimulated the twitching motility of rhlI and wild-type P. aeruginosa on Fe-rich minimal medium. Still, addition of exogenous C4-HSL did not stimulate the twitching motility of either strain on Fe-replete medium, indicating that some Fe-regulated and RhlI/C4-HSL-dependent extracellular product(s) was responsible for the enhanced twitching motility (and reduced biofilm formation) seen in response to Fe limitation. 相似文献
11.
Souza LC Wulff NA Gaurivaud P Mariano AG Virgílio AC Azevedo JL Monteiro PB 《FEMS microbiology letters》2006,257(2):236-242
Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose. 相似文献
12.
Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation
下载免费PDF全文

Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swimming motility by utilizing a small group of flagella localized to a single pole or the subpolar region of the cell. There is no evidence for twitching or swarming motility in A. tumefaciens. Site-specific deletion mutations that resulted in either aflagellate, flagellated but nonmotile, or flagellated but nonchemotactic A. tumefaciens derivatives were examined for biofilm formation under static and flowing conditions. Nonmotile mutants were significantly deficient in biofilm formation under static conditions. Under flowing conditions, however, the aflagellate mutant rapidly formed aberrantly dense, tall biofilms. In contrast, a nonmotile mutant with unpowered flagella was clearly debilitated for biofilm formation relative to the wild type. A nontumbling chemotaxis mutant was only weakly affected with regard to biofilm formation under nonflowing conditions but was notably compromised in flow, generating less adherent biomass than the wild type, with a more dispersed cellular arrangement. Extragenic suppressor mutants of the chemotaxis-impaired, straight-swimming phenotype were readily isolated from motility agar plates. These mutants regained tumbling at a frequency similar to that of the wild type. Despite this phenotype, biofilm formation by the suppressor mutants in static cultures was significantly deficient. Under flowing conditions, a representative suppressor mutant manifested a phenotype similar to yet distinct from that of its nonchemotactic parent. 相似文献
13.
A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation 总被引:1,自引:0,他引:1
下载免费PDF全文

Shanks RM Stella NA Kalivoda EJ Doe MR O'Dee DM Lathrop KL Guo FL Nau GJ 《Journal of bacteriology》2007,189(20):7262-7272
14.
15.
Koczan JM Lenneman BR McGrath MJ Sundin GW 《Applied and environmental microbiology》2011,77(19):7031-7039
Biofilm formation plays a critical role in the pathogenesis of Erwinia amylovora and the systemic invasion of plant hosts. The functional role of the exopolysaccharides amylovoran and levan in pathogenesis and biofilm formation has been evaluated. However, the role of biofilm formation, independent of exopolysaccharide production, in pathogenesis and movement within plants has not been studied previously. Evaluation of the role of attachment in E. amylovora biofilm formation and virulence was examined through the analysis of deletion mutants lacking genes encoding structures postulated to function in attachment to surfaces or in cellular aggregation. The genes and gene clusters studied were selected based on in silico analyses. Microscopic analyses and quantitative assays demonstrated that attachment structures such as fimbriae and pili are involved in the attachment of E. amylovora to surfaces and are necessary for the production of mature biofilms. A time course assay indicated that type I fimbriae function earlier in attachment, while type IV pilus structures appear to function later in attachment. Our results indicate that multiple attachment structures are needed for mature biofilm formation and full virulence and that biofilm formation facilitates entry and is necessary for the buildup of large populations of E. amylovora cells in xylem tissue. 相似文献
16.
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied. 相似文献
17.
Travensolo RF Garcia W Muniz JR Caruso CS Lemos EG Carrilho E Araújo AP 《Protein expression and purification》2008,59(1):153-160
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. 相似文献
18.
Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation 总被引:2,自引:0,他引:2
Pradeep K. Singh 《Biometals》2004,17(3):267-270
This paper summarizes a presentation at the 6th International Conference on Lactoferrin Structure and Function. Some of this data has been previously published. 相似文献
19.
Catani CF Azzoni AR Paula DP Tada SF Rosselli LK de Souza AP Yano T 《Protein expression and purification》2004,37(2):6751-326
Mitochondrial 3-ketoacyl-CoA thiolase is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patients has been previously reported. We cloned a cDNA of rat mitochondrial 3-ketoacyl-CoA thiolase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. The cloned cDNA was overexpressed in Escherichia coli and the soluble protein was purified with a nickel Hi-Trap chelating metal affinity column in 92% yield to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial 3-ketoacyl-CoA thiolase was 25U/mg. It has been proposed that His352 is a catalytic residue responsible for activation of coenzyme A by deprotonation of a sulfhydryl group. We constructed four mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that His352 is a catalytic residue of rat mitochondrial 3-ketoacyl-CoA thiolase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial 3-ketoacyl-CoA thiolase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of the mechanism for the reaction catalyzed by 3-ketoacyl-CoA thiolase. 相似文献
20.
Silva-Stenico ME Pacheco FT Rodrigues JL Carrilho E Tsai SM 《Microbiological research》2005,160(4):429-436
In this study, the production of siderophores by Xylella fastidiosa from the citrus bacteria isolate 31b9a5c (FAPESP – ONSA, Brazil) was investigated. The preliminary evidence supporting the existence of siderophore in X. fastidiosa was found during the evaluation of sequencing data generated in our lab using the BLAST-X tool, which indicated putative open reading frames (ORFs) associated with iron-binding proteins. In an iron-limited medium siderophores were detected in the supernatant of X. fastidiosa cultures. The endophytic bacterium Methylobacterium extorquens was also evaluated. Capillary electrophoresis was used to separate putative siderophores produced by X. fastidiosa. The bacterial culture supernatants of X. fastidiosa were identified negative for hydroxamate and catechol and positive for M. extorquens that secreted hydroxamate-type siderophores. 相似文献