首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat aortic ring assay has been previously described as a useful ex vivo model for analyzing the biological activity of various inhibitors of angiogenesis. Rat aortic rings are exposed to antiangiogenic agents for a five-day incubation period. Then, the degree of microvessel outgrowth from the rings is analyzed and quantified. In contrast to most in vitro angiogenesis assays, the rat aortic ring model provides a unique microenvironment to evaluate the interaction of various cell types and biological factors for their influence on angiogenesis. Microarray analysis is an accepted method for the evaluation of gene expression profiles and can be used to better understand changes in gene expression that occur when rat aortic rings are exposed to a particular biological agent. Here we describe a method of using microarray technology to evaluate the modulation of gene expression in angiogenesis using the rat aortic ring assay.  相似文献   

2.
本研究以体外微血管培养模型为基础,用鼠尾胶原包埋大鼠动脉环,并将包埋的动脉环转移到种有人肺癌A549细胞单层的培养皿中,用MCDB 131无血清培养液对动脉环和肿瘤细胞进行共培养,从而建立肿瘤微血管体外生成模型。大鼠动脉环于培养后第3天从血管壁长出微血管芽,第6至10天长成微血管丛,两周后新生微血管开始萎缩;没有肿瘤细胞刺激的条件下,大鼠动脉环新生微血管数量明显减少。结果表明人肺癌A549细胞能够促进血管生成。体外大鼠动脉环肿瘤微血管培养模型操作简单、灵敏度高,适合研究肿瘤血管新生及其机制。  相似文献   

3.
4.
Endostatin has demonstrated potent antiangiogenic and antitumor activity in mouse models. We have investigated the ex vivo rat aortic ring assay and a human vein model to assess the biological activity of murine and human endostatin. Rat aortic rings were exposed to recombinant murine endostatin (Spodoptera frugipera; Calbiochem, San Diego, CA) or recombinant human endostatin (Pichia pastoris; EntreMed, Rockville, MD). After 5 days, murine endostatin (500 microgram/ml) demonstrated inhibition of microvessel outgrowth with dose-dependent effects (down to 16 microgram/ml). No significant inhibition was observed with human endostatin in the rat assay. Human endostatin at 250 and 500 microgram/ml inhibited outgrowths from human saphenous vein rings after a 14-day incubation. Electron microscopy assessed the formation of basal lamina, confirming that the microvessels were progenitors of patent vessels. Immunostaining for Factor VIII or CD34 demonstrated that the microvessel cells were endothelial. BrdU incorporation assays supported the presence of proliferating endothelial cells, correlating with neovascularization from the aortic wall. We conclude that the rat aortic ring assay confirms the antiangiogenic activity of murine but not human endostatin, suggesting that the model may have species specificity. However, the human form shows biological activity against human vascular tissue.  相似文献   

5.
The complexity of the angiogenic cascade limits cellular approaches to studying angiogenic endothelial cells (ECs). In turn, in vivo assays do not allow the analysis of the distinct cellular behavior of ECs during angiogenesis. Here we show that ECs can be grafted as spheroids into a matrix to give rise to a complex three-dimensional network of human neovessels in mice. The grafted vasculature matures and is connected to the mouse circulation. The assay is highly versatile and facilitates numerous applications including studies of the effects of different cytokines on angiogenesis. Modifications make it possible to study human lymphangiogenic processes in vivo. EC spheroids can also be coimplanted with other cell types for tissue engineering purposes.  相似文献   

6.
Development of therapies based on the growth inhibition of new blood vessels is among the most intensively studied approaches to the treatment of cancer and other angiogenesis-related diseases. Shark cartilage has been proven to have inhibitory effects on the endothelial cell angiogenesis, metastasis, cell adhesion and MMP (matrix metalloprotease) activity. In the present study, we have used a chromatography-based procedure for the isolation and partial purification of a shark cartilage protein fraction containing anti-angiogenesis activity. Proteins were extracted in 4 M guanidinium chloride, followed by sequential anion- and cation-exchange column chromatography. Angiogenesis assays were performed using the rat aortic ring and chick CAM (chorioallantoic membrane) assay models. The results show that the final fraction contains two proteins with molecular masses of 14.7 and 16 kDa. The protein fraction is able to block microvessel sprouting in the collagen-embedded rat aortic ring assay in vitro and inhibition of capillary sprouting in the CAM assay in vivo. It is suggested that these are partially purified anti-angiogenesis proteins, which have further biotechnological or biomedical applications.  相似文献   

7.
Fibronectin is a component of the extracellular matrix of developing microvessels whose role in angiogensis is poorly understood. This study evaluated the effect of plasma fibronectin on angiogenesis in serum-free collagen gel culture of rat aorta. Aortic explants embedded in collagen gels generated microvascular outgrowths. Fibronectin incorporated in the collagen gel promoted a selective dose-dependent elongation of the newly formed microvessels without stimulating vascular proliferation. The fibronectin-treated microvessels were longer due to a proportional increase in the number of microvascular cells. However, fibronectin had no effect on microvascular DNA synthesis and mitotic activity. Fibronectin stimulated microvascular length also in cultures in which mitotic activity was suppressed and angiogenesis was markedly reduced by pretreating the aortic explants with mitomycin C. The synthetic peptide Gly-Arg-Asp-(GRGDS), which competes for the binding of fibronectin to its cell receptors and inhibits the adhesion of endothelial cells to substrates, arrested the elongation of developing microvessels causing regression and inhibition of angiogenesis. Conversely, Gly-Arg-Glu-(GRGES), which lacks the RGD sequence, had no inhibitory effect. These data support the hypothesis that fibronectin promotes angiogenesis and suggest that developing microvessels elongate in response to fibronectin as a result of an adhesion-dependent migratory recruitment of endothelial cells that does not require increased cell proliferation. © 1993 Wiley-Liss, Inc.  相似文献   

8.

Background

The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA) through its receptor CD44 has been described to be involved in the process of angiogenesis.

Objective

To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU) on endometriosis-related angiogenesis.

Materials and Methods

The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6), 20mg/kg 4-MU (n = 8) or 80mg/kg 4-MU (n = 7) throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.

Main Results

Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.

Conclusions

The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the treatment of endometriosis.  相似文献   

9.
Carnosic acid, a diterpene in rosemary, is considered to be beneficial in the prevention of chronic neurodegenerative diseases. Recently, it has been found that drugs with antiangiogenic activity lower the risk of neurodegenerative diseases. Thus it is of interest whether carnosic acid has antiangiogenic activity. In this study, carnosic acid suppressed microvessel outgrowth on ex vivo angiogenesis assay using a rat aortic ring at higher than 10 μM. The antiangiogenic effect of carnosic acid was found in angiogenesis models using human umbilical vein endothelial cells with regard to tube formation on reconstituted basement membrane, chemotaxis and proliferation. Although the carnosol in rosemary also suppressed angiogenesis, its effect was not more potent than that of carnosic acid in the ex vivo model. These results suggest that carnosic acid and rosemary extract can be useful in the prevention of disorders due to angiogenesis, and that their antiangiogenic effect can contribute to a neuroprotective effect.  相似文献   

10.
Invasive and metastatic cells, as well as endothelial cells, must cross basement membranes (BMs) in order to disseminate or to form new blood vessels. The chemoinvasion assay using the reconstituted BM Matrigel in Boyden blind-well chambers is a very rapid, easy, inexpensive and flexible test that can be used to quantify the invasive potential of most cell types; it can be applied to detect the migratory activity associated with matrix degradation and can also be adapted to study the selective degrading activity on different matrix substrates. Transwell inserts can also be used. Once the optimal experimental conditions are empirically determined for specific cellular models, the chemoinvasion assay can be used for the screening of inhibitors of invasiveness and angiogenesis, or to select for invasive cellular populations. This protocol can be completed in 9 h.  相似文献   

11.
Angiogenesis, a key step in many physiological and pathological processes, involves proteolysis of the extracellular matrix. To study the role of two enzymatic families, serine-proteases and matrix metalloproteases in angiogenesis, we have adapted to the mouse, the aortic ring assay initially developed in the rat. The use of deficient mice allowed us to demonstrate that PAI-1 is essential for angiogenesis while the absence of an MMP, MMP-11, did not affect vessel sprouting. We report here that this model is attractive to elucidate the cellular and molecular mechanisms of angiogenesis, to identify, characterise or screen “pro- or anti-angiogenic agents that could be used for the treatment of angiogenesis-dependent diseases. Approaches include using recombinant proteins, synthetic molecules and adenovirus-mediated gene transfer. Published: October 28, 2002  相似文献   

12.
Shyu YJ  Suarez CD  Hu CD 《Nature protocols》2008,3(11):1693-1702
Studies of protein interactions have increased our understanding and knowledge of biological processes. Assays that utilize fluorescent proteins, such as fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), have enabled direct visualization of protein interactions in living cells. However, these assays are primarily suitable for a pair of interacting proteins, and methods to visualize and identify multiple protein complexes in vivo are very limited. This protocol describes the recently developed BiFC-FRET assay, which allows visualization of ternary complexes in living cells. We discuss how to design the BiFC-FRET assay on the basis of the validation of BiFC and FRET assays and how to perform transfection experiments for acquisition of fluorescent images for net FRET calculation. We also provide three methods for normalization of the FRET efficiency. The assay employs a two-chromophore and three-filter FRET setup and is applicable to epifluorescence microscopes. The entire protocol takes about 2-3 weeks to complete.  相似文献   

13.
Summary The role of collagen in microvascular growth was investigated using the aortic ring model of angiogenesis. Collagen production by vasoformative outgrowths in plasma clot culture of rat aorta was either stimulated with ascorbic acid or inhibited with the proline analogue cis-hydroxyproline. Microvessels proliferating in the absence of ascorbic acid supplements became ectatic and developed large lumina. In contrast, newly formed microvessels in the presence of ascorbic acid remained small and maintained thin lumina throughout the angiogenic process. Biochemical studies demonstrated enhanced collagen production and deposition in cultures treated with ascorbic acid. Ultrastructural studies of these cultures showed a marked increase in newly formed interstitial collagen in the perivascular matrix and in regions of the plasma clot containing nonendothelial mesenchymal cells. Small microvessels with thin lumina similar to the ones observed in ascorbic acid-treated plasma clot cultures were obtained by growing aortic explants in gels of interstitial collagen in the absence of ascorbic acid. Inhibition of collagen production with the proline analogue cis-hydroxyproline had a marked anti-angiogenic effect in both plasma clot and collagen gel cultures. The anti-angiogenic effect of cis-hydroxyproline was abolished by addingl-proline to the culture medium, thereby restoring normal metabolism. These results support the hypothesis that angiogenesis is regulated by collagen production and suggest that the size of newly formed microvessels is influenced by the degree of collagenization of the extracellular matrix.  相似文献   

14.
Mountain DJ  Singh M  Singh K 《Life sciences》2008,82(25-26):1224-1230
Angiogenesis, the formation of new capillaries from preexisting vessels, plays an essential role in revascularization of the myocardium following myocardial infarction (MI). Interleukin-1beta (IL-1beta), a proinflammatory cytokine increased in the heart following MI, is shown to be essential for angiogenesis in the invasiveness of tumor cells, the progression of arthritic conditions and endometriosis, and the promotion of wound healing. Here we studied the steps of angiogenesis in response to IL-1beta in cardiac microvascular endothelial cells (CMECs) and aortic tissue. Cell cycle progression analysis using flow cytometry indicated a G0/G1 phase cell cycle arrest in IL-1beta-stimulated cells. IL-1beta significantly reduced levels of fibrillar actin in the cytoskeleton, a pre-requisite for tube formation, as indicated by phalloidin-FITC staining. Wound healing assays demonstrated IL-1beta prevents cell-to-cell contact formation. On the other hand, vascular endothelial growth factor-D (VEGF-D) initiated restoration of the cell monolayer. IL-1beta significantly inhibited in vitro tube formation as analyzed by three-dimensional collagen matrix assay. Aortic ring assay demonstrated that IL-1beta inhibits basal and VEGF-D-stimulated microvessel sprouting from aortic rings. The data presented here are novel and of significant interest, providing evidence that IL-1beta impedes the process of angiogenesis in myocardial endothelial cells.  相似文献   

15.
Matrix-bound thrombospondin promotes angiogenesis in vitro   总被引:13,自引:3,他引:10  
Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from explants of rat aorta. This serum-free model allowed us to study the angiogenic effect of TSP without the interference of attachment and growth factors present in serum. TSP promoted dose- dependent growth of microvessels and fibroblast-like cells. The number of microvessels in TSP-containing collagen and fibrin gels increased by 136 and 94%, respectively. The TSP effect was due in part to cell proliferation since a 97% increase in [3H]thymidine incorporation by the aortic culture was observed. The effect was TSP-specific because TSP preparations adsorbed with anti-TSP antibody showed no activity. TSP did not promote angiogenesis directly since no TSP-dependent growth of isolated endothelial cells could be demonstrated. Rather TSP directly stimulated the growth of aortic culture-derived myofibroblasts which in turn promoted microvessel formation when cocultured with the aortic explants. Angiogenesis was also stimulated by myofibroblast- conditioned medium. Partial characterization of the conditioned medium suggests that the angiogenic activity is due to heparin-binding protein(s) with molecular weight > 30 kD. These results indicate that matrix-bound TSP can indirectly promote microvessel formation through growth-promoting effects on myofibroblasts and that TSP may be an important stimulator of angiogenesis and wound healing in vivo.  相似文献   

16.
17.
This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel-incorporating chambers between surface-accessible microchannels. By using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of <1 mm, thereby replicating many aspects of the in vivo microenvironment. Capabilities exist for time-dependent manipulation of flow and concentration gradients as well as high-resolution real-time imaging for observing spatial-temporal single-cell behavior, cell-cell communication, cell-matrix interactions and cell population dynamics. These heterotypic cell type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and they have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 d to fabricate the system and experiments can run for up to several weeks.  相似文献   

18.
Recent reports have indicated that mesenchymal stromal cells (MSCs) from bone marrow have a potential in vascular remodeling and angiogenesis. Here, we report a unique phenomenon that under serum-deprived conditions MSCs survive and replicate. Secretome analysis of MSCs grown under serum-deprived conditions (SD-MSCs) identified a significant upregulation of prosurvival and angiogenic factors including VEGF-A, ANGPTs, IGF-1, and HGF. An ex vivo rat aortic assay demonstrated longer neovascular sprouts generated from rat aortic rings cultured in SD-MSC-conditioned media compared to neovascular sprouts from aortas grown in MSC-conditioned media. With prolonged serum deprivation, a subpopulation of SD-MSCs began to exhibit an endothelial phenotype. This population expressed endothelial-specific proteins including VEGFR2, Tie2/TEK, PECAM/CD31, and eNOS and also demonstrated the ability to uptake acetylated LDL. SD-MSCs also exhibited enhanced microtubule formation in an in vitro angiogenesis assay. Modified chick chorioallantoic membrane (CAM) angiogenesis assays showed significantly higher angiogenic potential for SD-MSCs compared to MSCs. Analysis of CAMs grown with SD-MSCs identified human-specific CD31-positive cells in vascular structures. We conclude that under the stress of serum deprivation MSCs are highly angiogenic and a population of these cells has the potential to differentiate into endothelial-like cells.  相似文献   

19.
This protocol details a culture technique for neonatal mouse retina that allows the assessment and quantification of acute responses of developing blood vessels to pharmacological manipulation. The technique has proven to be a useful tool for elucidating the molecular mechanisms that underlie the guidance of tip cells in the complex scenario of the angiogenic sprouting process. This culture setting allows the acute stimulation or inhibition of cellular functions of endothelial cells in their physiological environment ex vivo. Compared with other existing techniques, such as retinal injections in animals, the explant culture described here is an easily manageable and highly flexible alternative that allows pharmacological manipulations of the developing retina vessels. The technique involves swift extraction of retina from intact eye and retinal flat mounting on a hydrophilic membrane with minimum disturbance of the tissue. The responses of tip endothelial cell sprouting activity and filopodial extension to different angiogenic and angioinhibitory factors can be evaluated within only 4 h. The whole process for the retinal explant cultures and stimulation can be completed in 10 h.  相似文献   

20.
Malignant tumors require a blood supply in order to survive and spread. These tumors obtain their needed blood from the patient''s blood stream by hijacking the process of angiogenesis, in which new blood vessels are formed from existing blood vessels. The CXCR2 (chemokine (C-X-C motif) receptor 2) receptor is a transmembrane G-protein-linked molecule found in many cells that is closely associated with angiogenesis1. Specific blockade of the CXCR2 receptor inhibits angiogenesis, as measured by several assays such as the endothelial tube formation assay. The tube formation assay is useful for studying angiogenesis because it is an excellent method of studying the effects that any given compound or environmental condition may have on angiogenesis. It is a simple and quick in vitro assay that generates quantifiable data and requires relatively few components. Unlike in vivo assays, it does not require animals and can be carried out in less than two days. This protocol describes a variation of the extracellular matrix supporting endothelial tube formation assay, which tests the CXCR2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号