首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Adiponectin is the most abundant adipokine secreted from adipocytes. Accumulating evidence suggests that the physiological roles of adiponectin go beyond its metabolic effects. In the present study, we demonstrate that adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) are expressed in adult hippocampal neural stem/progenitor cells (hNSCs). Adiponectin treatment increases proliferation of cultured adult hNSCs in a dose- and time-dependent manner, whereas apoptosis and differentiation of adult hNSCs into neuronal or glial lineage were not affected. Adiponectin activates AMP-activated protein kinase and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in adult hNSCs. Pretreatment with the p38MAPK inhibitor SB203580, but not the AMP-activated protein kinase inhibitor Compound C, attenuates adiponectin-induced cell proliferation. Moreover, adiponectin induces phosphorylation of Ser-389, a key inhibitory site of glycogen synthase kinase 3β (GSK-3β), and this effect can be blocked by inhibition of p38MAPK with SB203580. Levels of total and nuclear β-catenin, the primary substrate of GSK-3β, were increased by adiponectin treatment. These results indicate that adiponectin stimulates proliferation of adult hNSCs, via acting on GSK-3β to promote nuclear accumulation of β-catenin. Thus, our studies uncover a novel role for adiponectin signaling in regulating proliferation of adult neural stem cells.  相似文献   

2.
GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.  相似文献   

3.
Mitogen-activated protein kinase (MAPK) p38α was shown to be implicated in the organogenesis of the placenta, and such placental alteration is crucial for the development of hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. We aimed to analyze for the first time human placental expression of MAPK p38α in pregnancies complicated by HELLP. The placental expression of MAPK p38α was investigated by semiquantitative polymerase chain reaction using cDNA extracted from placental tissue of 15 pregnancies with HELLP syndrome and 15 gestational age-matched controls. Seven patients with HELLP also had intrauterine fetal growth restriction (IUGR). In placenta from pregnancy complicated by HELLP, the expression of MAPK p38α is significantly decreased compared to the group with normal pregnancy (p < 0.001), while no difference was found between the HELLP and HELLP with IUGR subpopulations. Our study shows for the first time that MAPK p38α is expressed in the human placenta. Pregnancies with placental dysfunction and hypertensive complications are characterized by a significantly decreased expression of MAPK p38α. Our observations suggest that p38 MAPK signaling may be essential in placental angiogenesis and functioning.  相似文献   

4.
The p38α mitogen-activated protein kinase (MAPK) is one of the serine/threonine kinases regulating a variety of biological processes, including cell-type specification, differentiation and migration. Previous in vitro studies using pharmacological inhibitors suggested that p38 MAPK is essential for oligodendrocyte (OL) differentiation and myelination. To investigate the specific roles of p38α MAPK in OL development and myelination in vivo, we generated p38α conditional knockout (CKO) mice under the PLP and nerve/glial antigen 2 (NG2) gene promoters, as these genes are specifically expressed in OL progenitor cells (OPCs). Our data revealed that myelin synthesis was completely inhibited in OLs differentiated from primary OPC cultures derived from the NG2 Cre-p38α CKO mouse brains. Although an in vivo myelination defect was not obvious after gross examination of these mice, electron microscopic analysis showed that the ultrastructure of myelin bundles was severely impaired. Moreover, the onset of myelination in the corpus callosum was delayed in the knockout mice compared with p38α fl/fl control mice. A delay in OL differentiation in the central nervous system was observed with concomitant downregulation in the expression of OPC- and OL-specific genes such as Olig1 and Zfp488 during early postnatal development. OPC proliferation was not affected during this time. These data indicate that p38α is a positive regulator of OL differentiation and myelination. Unexpectedly, we observed an opposite effect of p38α on remyelination in the cuprizone-induced demyelination model. The p38α CKO mice exhibited better remyelination capability compared with p38α fl/fl mice following demyelination. The opposing roles of p38α in myelination and remyelination could be due to a strong anti-inflammatory effect of p38α or a dual reciprocal regulatory action of p38α on myelin formation during development and on remyelination after demyelination.The myelin sheath is the fatty insulating layer that wraps around the axons of the nerves and is critical to the efficient conduction of nerve impulses. It is produced by a specialized glial cell called oligodendrocyte (OL) in the central nervous system (CNS). The proper development of OL and myelination is essential for maintaining the efficiency and speed of electrical nerve impulse. The damage to the developing OL and myelin is a hallmark of many demyelinating and dysmyelinating disorders, including the autoimmune disorders such as multiple sclerosis (MS) as well as periventricular leukomalacia, which is the predominate form of white matter injury seen in premature infants, leading to disability and neurological and cognitive impairments.1, 2, 3Myelination is a complicated process involving generation of OL progenitor cells (OPCs), differentiation of OPCs into myelinating OLs, ensheathment of axons by OLs and finally wrapping the nerves with the expansion of myelin sheath.4, 5, 6 The study of intracellular signals that regulate myelinogenesis is crucial to our understanding of the developmental and pathological processes in white matter structures.The mitogen-activated protein kinases (MAPKs) belong to the family of serine/threonine protein kinases that allow cells to respond to stimuli received from their extracellular environment, including mitogens as well as to intracellular stress. The p38 MAPK family members (p38α, p38β, p38γ and p38δ) in particular are implicated in various biological processes, such as cell survival, proliferation and differentiation.7, 8, 9, 10 The p38α is well established as a mediator of stress responses in neural cells; however, its physiological role(s) during OL development and myelination has only been recognized recently.11, 12, 13, 14, 15, 16 Using p38 inhibitors, several studies have demonstrated that p38α MAPK is important for myelination in cultured Schwann cells11 and OPCs.12 In addition, p38α has been reported to affect both cell proliferation and glial lineage progression in the presence of growth factors.17 More recently, Hossain et al.15 demonstrated that p38α controls Krox-20 to regulate Schwann cell differentiation and peripheral myelination. In contrast, p38 has also been reported as a negative regulator of Schwann cell differentiation and myelination.16 However, most studies were carried out using in vitro glial cell culture systems and with p38 inhibitors that were not selective for the p38α isoform. The in vivo molecular mechanisms and signaling events by which p38α regulates OPC development and myelination, therefore, remain elusive.In an effort to identify the specific role(s) of p38α in myelination during early postnatal development, we have bred p38α-floxed (p38α fl/fl) mice with nerve/glial antigen 2 (NG2) or proteolipid peptide (PLP)-cre mice to generate homozygous conditional NG2/Plp-specific p38α knockout mice for the first time. Our data showed that p38 α is a positive regulator of OL development and myelination during CNS development as both myelination and OL development were impaired in specific forebrain regions of the conditional knockout (CKO) mice. Surprisingly, we observed an opposite effect of p38α on remyelination in the cuprizone-induced demyelination model. Our findings identified novel reciprocal roles of p38α during OL development in the early postnatal brain and during remyelination in adult mice, implicating the therapeutic potential of p38α inhibition in CNS remyelination.  相似文献   

5.
Pancreatic cancer is highly invasive and is currently the fourth leading cause of cancer death worldwide. CXC chemokine receptor-4 (CXCR4) is a G protein-coupled receptor for CXC chemokine ligand 12/stromal cell-derived factor-1α (SDF-1α), a member of a large family of small, structurally related, heparin-binding chemokine proteins. SDF-1α/CXCR4 plays an important role in tumor growth, invasion, metastasis, and angiogenesis. SDF-1α and CXCR4 are upregulated in many tumors, including pancreatic cancer tissues, and preliminary data indicate that the SDF-1/CXCR4 axis plays an important role in tumor invasion. However, their precise role and the mechanism through which they function remain largely unknown. In this study, analysis of SDF-1α, CXCR4 and MMP-2 expression in pancreatic cancer and adjacent tissue samples from ten patients revealed that all three proteins are overexpressed in human pancreatic cancer. SDF-1α induced MMP-2 and MMP-9 upregulation in PANC-1 and SW-1990 cells, which was associated with increased pancreatic cancer cell proliferation and invasion. Furthermore, SDF-1α induced p38 phosphorylation and p38 inhibition reduced both the level of SDF-1α-stimulated MMP-2 expression and PANC-1 cell invasion. Overall, our results demonstrate that SDF-1α/CXCR4 upregulates MMP-2 expression and induces pancreatic cancer cell invasion in PANC-1 and SW-1990 cell lines by activating p38 MAPK.  相似文献   

6.
Mer tyrosine kinase (MerTK) is an integral membrane protein that is preferentially expressed by phagocytic cells, where it promotes efferocytosis and inhibits inflammatory signaling. Proteolytic cleavage of MerTK at an unidentified site leads to shedding of its soluble ectodomain (soluble MER; sMER), which can inhibit thrombosis in mice and efferocytosis in vitro. Herein, we show that MerTK is cleaved at proline 485 in murine macrophages. Site-directed deletion of 6 amino acids spanning proline 485 rendered MerTK resistant to proteolysis and suppression of efferocytosis by cleavage-inducing stimuli. LPS is a known inducer of MerTK cleavage, and the intracellular signaling pathways required for this action are unknown. LPS/TLR4-mediated generation of sMER required disintegrin and metalloproteinase ADAM17 and was independent of Myd88, instead requiring TRIF adaptor signaling. LPS-induced cleavage was suppressed by deficiency of NADPH oxidase 2 (Nox2) and PKCδ. The addition of the antioxidant N-acetyl cysteine inhibited PKCδ, and silencing of PKCδ inhibited MAPK p38, which was also required. In a mouse model of endotoxemia, we discovered that LPS induced plasma sMER, and this was suppressed by Adam17 deficiency. Thus, a TRIF-mediated pattern recognition receptor signaling cascade requires NADPH oxidase to activate PKCδ and then p38, culminating in ADAM17-mediated proteolysis of MerTK. These findings link innate pattern recognition receptor signaling to proteolytic inactivation of MerTK and generation of sMER and uncover targets to test how MerTK cleavage affects efferocytosis efficiency and inflammation resolution in vivo.  相似文献   

7.
Hyperphosphorylation of tau is a hallmark of Alzheimer's disease and other tauopathies. Although the mechanisms underlying hyperphosphorylation are not fully understood, cellular stresses such as impaired energy metabolism are thought to influence the signalling cascade. The AMPK (AMP-activated protein kinase)-related kinases MARK (microtubule-associated protein-regulating kinase/microtubule affinity-regulating kinase) and BRSK (brain-specific kinase) have been implicated in tau phosphorylation, but are insensitive to activation by cellular stress. In the present study, we show that AMPK itself phosphorylates tau on a number of sites, including Ser2?2 and Ser3??, altering microtubule binding of tau. In primary mouse cortical neurons, CaMKKβ (Ca2+/calmodulin-dependent protein kinase kinase β) activation of AMPK in response to Aβ (amyloid-β peptide)-(1-42) leads to increased phosphorylation of tau at Ser2?2/Ser3?? and Ser33??. Activation of AMPK by Aβ-(1-42) is inhibited by memantine, a partial antagonist of the NMDA (N-methyl-D-aspartate) receptor and currently licensed for the treatment of Alzheimer's disease. These findings identify a pathway in which Aβ-(1-42) activates CaMKKβ and AMPK via the NMDA receptor, suggesting the possibility that AMPK plays a role in the pathophysiological phosphorylation of tau.  相似文献   

8.
Diabetes is a consequence of reduced β-cell function and mass, due to β-cell apoptosis. Endoplasmic reticulum (ER) stress is induced during β-cell apoptosis due to various stimuli, and our work indicates that group VIA phospholipase A2β (iPLA2β) participates in this process. Delineation of underlying mechanism(s) reveals that ER stress reduces the anti-apoptotic Bcl-x(L) protein in INS-1 cells. The Bcl-x pre-mRNA undergoes alternative pre-mRNA splicing to generate Bcl-x(L) or Bcl-x(S) mature mRNA. We show that both thapsigargin-induced and spontaneous ER stress are associated with reductions in the ratio of Bcl-x(L)/Bcl-x(S) mRNA in INS-1 and islet β-cells. However, chemical inactivation or knockdown of iPLA2β augments the Bcl-x(L)/Bcl-x(S) ratio. Furthermore, the ratio is lower in islets from islet-specific RIP-iPLA2β transgenic mice, whereas islets from global iPLA2β−/− mice exhibit the opposite phenotype. In view of our earlier reports that iPLA2β induces ceramide accumulation through neutral sphingomyelinase 2 and that ceramides shift the Bcl-x 5′-splice site (5′SS) selection in favor of Bcl-x(S), we investigated the potential link between Bcl-x splicing and the iPLA2β/ceramide axis. Exogenous C6-ceramide did not alter Bcl-x 5′SS selection in INS-1 cells, and neutral sphingomyelinase 2 inactivation only partially prevented the ER stress-induced shift in Bcl-x splicing. In contrast, 5(S)-hydroxytetraenoic acid augmented the ratio of Bcl-x(L)/Bcl-x(S) by 15.5-fold. Taken together, these data indicate that β-cell apoptosis is, in part, attributable to the modulation of 5′SS selection in the Bcl-x pre-mRNA by bioactive lipids modulated by iPLA2β.  相似文献   

9.
In inflammatory processes, the p38 mitogen-activated protein kinase (MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor α (TNF-α) is a pivotal cytokine in rheumatoid arthritis and its production in macrophages is under control of the p38 MAPK route. Inhibition of the p38 MAPK route may inhibit production not only of TNF-α, but also of other inflammatory mediators produced by macrophages, and indirectly of inflammatory mediators by other cells induced by TNF-α stimulation. Here we investigate the effects of RWJ 67657, a p38 MAPK inhibitor, on mRNA expression and protein production of TNF-α and other inflammatory mediators, in monocyte-derived macrophages. A strong inhibition of TNF-α was seen at pharmacologically relevant concentrations of RWJ 67657, but also inhibition of mRNA expression of IL-1β, IL-8, and cyclooxygenase-2 was shown. Furthermore, it was shown that monocyte-derived macrophages have a high constitutive production of matrix metalloproteinase 9, which is not affected by p38 MAPK inhibition. The results presented here may have important implications for the treatment of rheumatoid arthritis.  相似文献   

10.
Activation of p38 MAPK is a key pathway for cell proliferation and differentiation in breast cancer and thyroid cells. The sodium/iodide symporter (NIS) concentrates iodide in the thyroid and lactating breast. All-trans-retinoic acid (tRA) markedly induces NIS activity in some breast cancer cell lines and promotes uptake of β-emitting radioiodide (131)I sufficient for targeted cytotoxicity. To identify a signal transduction pathway that selectively stimulates NIS expression, we investigated regulation by the Rac1-p38 signaling pathway in MCF-7 breast cancer cells and compared it with regulation in FRTL-5 rat thyroid cells. Loss of function experiments with pharmacologic inhibitors and small interfering RNA, as well as RT-PCR analysis of p38 isoforms, demonstrated the requirement of Rac1, MAPK kinase 3B, and p38β for the full expression of NIS in MCF-7 cells. In contrast, p38α was critical for NIS expression in FRTL-5 cells. Treatment with tRA or overexpression of Rac1 induced the phosphorylation of p38 isoforms, including p38β. A dominant negative mutant of Rac1 abolished tRA-induced phosphorylation in MCF-7 cells. Overexpression of p38β or Rac1 significantly enhanced (1.9- and 3.9-fold, respectively), the tRA-stimulated NIS expression in MCF-7 cells. This study demonstrates differential regulation of NIS by distinct p38 isoforms in breast cancer cells and thyroid cells. Targeting isoform-selective activation of p38 may enhance NIS induction, resulting in higher efficacy of (131)I concentration and treatment of breast cancer.  相似文献   

11.
Activation of phospholipases A2 (PLA2s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca2+-independent PLA2, designated iPLA2β, is active in the absence of Ca2+, activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10–15 years, studies using BEL have demonstrated that iPLA2β participates in various biological processes and the recent availability of mice in which iPLA2β expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA2β activates a unique signaling cascade that promotes β-cell apoptosis. This pathway involves iPLA2β dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting β-cell apoptosis as a major contributor to the loss of β-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying β-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca2+-independent PLA2 (iPLA2β) followed by a more focused discussion of its participation in β-cell apoptosis. We suggest that iPLA2β-derived products trigger pathways which can lead to β-cell apoptosis during the development of diabetes.  相似文献   

12.
Summary The localization of PKC- was studied in rat sympathetic neurons using a polyclonal antibody specific for the 1- and 2-subspecies. The tissues studied included the superior cervical (SCG) and hypogastric (HGG) ganglia and the target tissues of the SCG and HGG neurons: the submandibular gland, iris, prostate and vas deferens. PKC--LI was found in nerve fibers in both ganglia. A proportion of the fibers in the SCG disappeared after decentralization, suggesting that the fibers were of both pre- and postganglionic origin. The somata of the HGG and SCG neurons expressed varying amounts of PKC--LI, the majority of SCG neurons being labelled only after colchicine treatment. In all target tissues there were PKC--immunoreactive nerve fibers in bundles, but the most peripheral branches of the fibers were negatively labelled. The results show that PKC--LI is widely present in sympathetic postganglionic neurons with mainly quantitative differences. The lack of PKC- in the most peripheral branches of nerve fibers might be a general feature of sympathetic postganglionic neurons, suggesting that the participation of PKC- in neurotransmitter release and in other functions in nerve terminals in sympathetic adrenergic neurons is unlikely.  相似文献   

13.
14.
Sakai A  Takasu K  Sawada M  Suzuki H 《PloS one》2012,7(2):e32268
The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK(1). The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-κB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders.  相似文献   

15.
Head and neck cancer is one of the most morbid human malignancies with an overall poor prognosis and severely compromised quality of life. As a result, there is significant interest in developing adjuvant therapies to augment currently available treatment protocols. Curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways. In this study, we showed that curcumin inhibits head and neck cancer cell growth through reduction of PGE2 receptor EP4 gene expression. Blockade of AMP-dependent kinase (AMPK), and p38 MAPK by either chemical inhibitors or siRNAs antagonized the inhibitory effect of curcumin on EP4 expression, which was reversed by metformin, an activator of AMPK. Curcumin induced PGC-1α protein that was blocked by compound C and SB239063. Silencing of PGC-1α reversed the effect of curcumin on EP4 protein. Overexpression of EP4 overcame the effect of curcumin on head and neck cancer cell growth. In addition, curcumin reduced Sp1 protein. Overexpression of Sp1 resisted the inhibitory effect of curcumin on EP4 promoter activity and protein expression. Interestingly, overexpression of PGC-1α further enhanced the inhibitory effect of curcumin on Sp1 protein expression that was blocked by SB239063. In conclusion, this study shows that curcumin inhibits EP4 gene expression dependent of AMPKα and p38 MAPK activation, this leads to reduction of Sp1 protein and binding to specific area in the EP4 gene promoter. The cross talks of AMPKα and p38 MAPK signaling, the kinase-mediated PGC-1α expression and reciprocity of PGC-1α and Sp1 enhance this process. This ultimately results in inhibition of head and neck cancer cell proliferation.  相似文献   

16.
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.  相似文献   

17.
Preeclampsia (PE) is known to be associated with increased circulating levels of anti-angiogenic factors, such as soluble fms-related tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng). However, the way that placental oxidative stress results in the elevation of these two factors remains enigmatic. We have observed the overexpression of growth arrest and DNA damage-inducible 45 alpha (Gadd45α) and excessive activation of p38 mitogen-activated protein kinase (MAPK) in preeclamptic placentas compared with normotensive controls, together with increased levels of sFlt-1 and sEng in maternal sera in patients with PE. Moreover, Gadd45α knockdown or p38 inhibition provides protective effects in hypoxia/reoxygenation (H/R)-exposed human umbilical vein endothelial cells (HUVECs) by suppressing oxidative stress, inhibiting apoptosis, and promoting their potential for in vitro angiogenesis. A regulatory signaling pathway in which H/R intervention causes the induction of Gadd45α leading to p38 activation and ultimately an increase in sFlt-1 and sEng secretion in HUVECs has concurrently been established. Our study opens up a promising new avenue of investigation for increasing the understanding of the origin of sFlt-1 and sEng in PE and provides novel therapeutic targets for pregnancy complications arising from placental endothelial dysfunction.  相似文献   

18.
19.
Obesity is associated with skeletal muscle loss and impaired myogenesis. Increased infiltration of proinflammatory macrophages in skeletal muscle is noted in obesity and is associated with muscle insulin resistance. However, whether the infiltrated macrophages can contribute to obesity-induced muscle loss is unclear. In this study, we investigate macrophage and muscle differentiation markers in the quadriceps (QC), gastrocnemius, tibia anterior, and soleus muscles from obese mice that were fed a high-fat diet for 16 weeks. Then, we examined the effect and mediator of macrophage-secreted factors on myoblast differentiation in vitro. We found markedly increased levels of proinflammatory macrophage markers (F4/80 and CD11c) in the QC muscle compared with the other three muscle groups. Consistent with the increased levels of proinflammatory macrophage infiltration, the QC muscle also showed a significant reduction in the expression of muscle differentiation makers MYOD1 and myosin heavy chain. In in vitro studies, treatment of C2C12 myoblasts with Raw 264.7 macrophage-conditioned medium (CM) significantly promoted cell proliferation and inhibited myoblast differentiation. Neutralization of tumor necrosis factor α (TNF-α) in Raw 264.7 macrophage CM reversed the reduction of myoblast differentiation. Finally, we found that both macrophage CM and TNF-α induced sustained activation of p38 mitogen-activated protein kinase (MAPK) in C2C12 myoblasts. Together, our findings suggest that the increased infiltration of proinflammatory macrophages could contribute toward obesity-induced muscle loss by secreting inflammatory cytokine TNF-α via the p38 MAPK signaling pathway.  相似文献   

20.
Multiple studies have reported different methods in treating gestational diabetes mellitus (GDM); however, the relationship between miR-335-5p and GDM still remains unclear. Here, this study explores the effect of miR-335-5p on insulin resistance and pancreatic islet β-cell secretion via activation of the TGFβ signaling pathway by downregulating VASH1 expression in GDM mice. The GDM mouse model was established and mainly treated with miR-335-5p mimic, miR-335-5p inhibitor, si-VASH1, and miR-335-5p inhibitor + si-VASH1. Oral glucose tolerance test (OGTT) was conducted to detect fasting blood glucose (FBG) fasting insulin (FINS). The OGTT was also used to calculate a homeostasis model assessment of insulin resistance (HOMA-IR). A hyperglycemic clamp was performed to measure the glucose infusion rate (GIR), which estimated β-cell function. Expressions of miR-335-5p, VASH1, TGF-β1, and c-Myc in pancreatic islet β-cells were determined by RT-qPCR, western blot analysis, and insulin release by ELISA. The miR-335-5p mimic and si-VASH1 groups showed elevated blood glucose levels, glucose area under the curve (GAUC), and HOMA-IR, but a reduced GIR and positive expression of VASH1. Overexpression of miR-335-5p and inhibition of VASH1 contributed to activated TGFβ1 pathway, higher c-Myc, and lower VASH1 expressions, in addition to downregulated insulin and insulin release levels. These findings provided evidence that miR-335-5p enhanced insulin resistance and suppressed pancreatic islet β-cell secretion by inhibiting VASH1, eventually activating the TGF-β pathway in GDM mice, which provides more clinical insight on the GDM treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号