首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epigenetic mechanisms in neurological disease   总被引:1,自引:0,他引:1  
The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.  相似文献   

2.
This paper considers molecular mechanisms of DNA methylation and histone modifications in plants. The role of these epigenetic processes in plant development is discussed.  相似文献   

3.
Epigenetic mechanisms governing seed development in plants   总被引:1,自引:0,他引:1       下载免费PDF全文
Köhler C  Makarevich G 《EMBO reports》2006,7(12):1223-1227
Seed development in flowering plants is initiated by the fusion of two male gametes with two female gametes--the egg cell and the central cell--which leads to the formation of an embryo and an endosperm, respectively. Fertilization-independent seed formation is actively repressed by the FERTILIZATION-INDEPENDENT SEED (FIS) Polycomb group (PcG) proteins, an evolutionarily conserved class of proteins that ensures the stable transmission of developmental decisions. The FIS proteins act together in a complex and modify their target genes by applying repressive methylation on histone H3 lysine 27. In addition to its function before fertilization, the FIS complex restricts endosperm proliferation. This function is likely to be achieved by imprinting the maternal alleles of FIS target genes. However, imprinting in the endosperm is controlled not only by the FIS complex but also by DNA methylation, and the interconnections between these two processes are now being investigated.  相似文献   

4.
5.
Epigenetic inheritance includes all non-Mendelian inheritance, in fact any inheritance that does not arise from base changes. Ciliates, particularly Paramecium and Tetrahymena, undergo epigenetic changes to their macronuclei when they are formed at nuclear reorganization. Once set, however, they are reproduced in a constant fashion, except for allelic segregations, during vegetative fissions in Tetrahymena and certain life cycle changes in both Paramecium and Tetrahymena. This review is meant to be inclusive, discussing all the known cases of epigenetic changes in macronuclei. They involve virtually all traits. We find that these macronuclear changes are subject to a variety of modifications in the way that they are implemented. They constitute a major feature of ciliate genetics, probably because the separation of generative and vegetative functions to micronuclei and macronuclei makes such changes possible.  相似文献   

6.
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Epigenetic Mechanisms in Health and Disease” was held in Barcelona, October 26-26, 2017. The 2017 BCEC was the fifth and last edition of a series of annual conferences organized as a joint effort of five leading Barcelona research institutes together with B-Debate. This edition was organized by Albert Jordan from the Molecular Biology Institute of Barcelona (IBMB-CSIC) and Marcus Bushbeck from the Josep Carreras Leukaemia Research Institute (IJC). Jordi Bernués, Marian Martínez-Balbás, and Ferran Azorín were also part of the scientific committee. In 22 talks and 51 posters, researchers presented their latest results in the fields of histone variants, epigenetic regulation, and chromatin 3D organization to an audience of around 250 participants from 16 countries. This year, a broad number of talks focused on the epigenetic causes and possible related treatments of complex diseases such as cancer. Participants at the 2017 BCEC elegantly closed the series, discussing progress made in the field of epigenetics and highlighting its role in human health and disease.  相似文献   

7.
8.
Epidemiological research suggests that both an individual's genes and the environment underlie the pathophysiology of schizophrenia. Molecular mechanisms mediating the interplay between genes and the environment are likely to have a significant role in the onset of the disorder. Recent work indicates that epigenetic mechanisms, or the chemical markings of the DNA and the surrounding histone proteins, remain labile through the lifespan and can be altered by environmental factors. Thus, epigenetic mechanisms are an attractive molecular hypothesis for environmental contributions to schizophrenia. In this review, we first present an overview of schizophrenia and discuss the role of nature versus nurture in its pathology, where ‘nature’ is considered to be inherited or genetic vulnerability to schizophrenia, and ‘nurture’ is proposed to exert its effects through epigenetic mechanisms. Second, we define DNA methylation and discuss the evidence for its role in schizophrenia. Third, we define posttranslational histone modifications and discuss their place in schizophrenia. This research is likely to lead to the development of epigenetic therapy, which holds the promise of alleviating cognitive deficits associated with schizophrenia.  相似文献   

9.
Day JJ  Sweatt JD 《Neuron》2011,70(5):813-829
Although the critical role for epigenetic mechanisms in development and cell differentiation has long been appreciated, recent evidence reveals that these mechanisms are also employed in postmitotic neurons as a means of consolidating and stabilizing cognitive-behavioral memories. In this review, we discuss evidence for an "epigenetic code" in the central nervous system that mediates synaptic plasticity, learning, and memory. We consider how specific epigenetic changes are regulated and may interact with each other during memory formation and how these changes manifest functionally at the cellular and circuit levels. We also describe a central role for mitogen-activated protein kinases in controlling chromatin signaling in plasticity and memory. Finally, we consider how aberrant epigenetic modifications may lead to cognitive disorders that affect learning and memory, and we review the therapeutic potential of epigenetic treatments for the amelioration of these conditions.  相似文献   

10.
Epigenetic memory is an essential process of life that governs the inheritance of predestined functional characteristics of normal cells and the newly acquired properties of cells affected by cancer and other diseases from parental to progeny cells. Unraveling the molecular basis of epigenetic memory dictated by protein and RNA factors in conjunction with epigenetic marks that are erased and re-established during embryogenesis/development during the formation of somatic, stem and disease cells will have far reaching implications to our understanding of embryogenesis/development and various diseases including cancer. While there has been enormous progress made, there are still gaps in knowledge which includes, the identity of unique epigenetic memory factors (EMFs) and epigenome coding enzymes/co-factors/scaffolding proteins involved in the assembly of defined “epigenetic memorysomes” and the epigenome marks that constitute collections of gene specific epigenetic memories corresponding to specific cell types and physiological conditions. A better understanding of the molecular basis for epigenetic memory will play a central role in improving diagnostics and prognostics of disease states and aid the development of targeted therapeutics of complex diseases.  相似文献   

11.
About 15-20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis.  相似文献   

12.
Changes in gene expression in brain reward regions are thought to contribute to the pathogenesis and persistence of drug addiction. Recent studies have begun to focus on the molecular mechanisms by which drugs of abuse and related environmental stimuli, such as drug-associated cues or stress, converge on the genome to alter specific gene programs. Increasing evidence suggests that these stable gene expression changes in neurons are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular and bioinformatic approaches being used to understand the complex epigenetic regulation of gene expression by drugs of abuse. This novel mechanistic insight might open new avenues for improved treatments of drug addiction.  相似文献   

13.
Epigenetic mechanisms in memory formation   总被引:11,自引:0,他引:11  
Discoveries concerning the molecular mechanisms of cell differentiation and development have dictated the definition of a new sub-discipline of genetics known as epigenetics. Epigenetics refers to a set of self-perpetuating, post-translational modifications of DNA and nuclear proteins that produce lasting alterations in chromatin structure as a direct consequence, and lasting alterations in patterns of gene expression as an indirect consequence. The area of epigenetics is a burgeoning subfield of genetics in which there is considerable enthusiasm driving new discoveries. Neurobiologists have only recently begun to investigate the possible roles of epigenetic mechanisms in behaviour, physiology and neuropathology. Strikingly, the relevant data from the few extant neurobiology-related studies have already indicated a theme - epigenetic mechanisms probably have an important role in synaptic plasticity and memory formation.  相似文献   

14.
15.
The ErbB family of receptor tyrosine kinases (RTKs) is a family of receptors that allow cells to interact with the extracellular environment and transduce signals to the nucleus that promote differentiation, migration and proliferation necessary for proper heart morphogenesis and function. This review focuses on the role of the ErbB family of receptor tyrosine kinases, and their importance in proper heart morphogenesis, as well as their role in maintenance and function of the adult heart. Studies from transgenic mouse models have shown the importance of ErbB receptors in heart development, and provide insight into potential future therapeutic targets to help reduce congenital heart defect (CHD) mortality rates and prevent disease in adults. Cancer therapeutics have also shed light to the ErbB receptors and signaling network, as undesired side effects have demonstrated their importance in adult cardiomyocytes and prevention of cardiomyopathies. This review will discuss ErbB receptor tyrosine kinases (RTK) in heart development and disease including valve formation and partitioning of a four-chambered heart as well as cardiotoxicity when ErbB signaling is attenuated in adults.  相似文献   

16.
17.
Adrenomedullin: molecular mechanisms and its role in cardiac disease   总被引:3,自引:0,他引:3  
Yanagawa B  Nagaya N 《Amino acids》2007,32(1):157-164
Summary. Adrenomedullin (AM) is a potent, long-lasting vasoactive peptide originally isolated from human pheochromocytoma. Since its discovery, serum and tissue AM expression have been shown to be increased in experimental models and in patients with cardiac hypertrophy, myocardial infarction and end-stage heart failure with several beneficial effects. Considerable evidence exists for a wide range of autocrine, paracrine and endocrine mechanisms for AM which include vasodilatory, anti-apoptotic, angiogenic, anti-fibrotic, natriuretic, diuretic and positive inotropic. Thus, through regulation of body fluid or direct cardiac mechanisms, AM has additive and beneficial effects in the context of heart disease. Notable molecular mechanisms of AM include cyclic adenosine monophosphate, guanosine-3′,5′-monophosphate, PI3K/Akt and MAPK-ERK-mediated cascades. Given the endogenous and multifunctional nature of AM, we consider this molecule to have great potential in the treatment of cardiovascular diseases. In agreement, early experimental and preliminary clinical studies suggest that AM is a new and promising therapy for cardiovascular diseases.  相似文献   

18.
Dang YH  Yan CX  Chen T 《遗传》2011,33(9):919-924
生命早期社会环境会对人类个体身心健康产生持久的影响已久为人知,然而要了解生命早期经历(包括来自母亲的关爱行为)与一生的认知和情绪健康之间的因果关系却只能借助于动物模型。文章综述了大鼠母爱行为对子代成年后应对应激的行为和繁育行为的影响及其表观遗传机制,并就这一模型对于环境因素影响人类身心健康的研究所具有的意义进行了展望。  相似文献   

19.
20.
Cancer is controlled not only by genetic events but also by epigenetic events. The active acquisition of epigenetic changes is a poorly understood but very important process in mammalian development, differentiation, and disease. It is well established that epigenetic events are controlled by a specific subgroup of proteins, such as DNA methyltransferases, histone acetylases histone lysine methyltransferases or histone deacetylases, that influence methylation or acetylation patterns to modulate gene expression. We and others have identified S‐adenosylhomocysteine hydrolase in a high‐throughput genetic screen focused on discovering novel genes whose inhibition induces immortalisation of primary cells. Herein, we address the importance of genes involved in epigenetic mechanisms during senescence and how their effects might determine senescence bypass and immortalisation. The ways in which genes that regulate epigenetic mechanisms might modulate senescence/immortalisation and how these pathways could influence cancer development are explored. Overall, epigenetic modifications seem to play a major role in cancer, influencing tumour outcome by interfering with key senescence pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号