首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown for the first time that deacylation is the rate-limiting stage in the enteropeptidase-catalyzed hydrolysis of highly efficient oligopeptide substrates containing four Asp residues in positions P2-P5. On the other hand, the rate-limiting stage in the hydrolysis of low-efficiency peptide substrates containing less than four Asp or Glu residues in positions P2-P5 is acylation, as has previously been suggested for all amide and peptide substrates of serine proteases on the basis of the classic studies by Bender et al. The method of introduction of an additional nucleophile or another effector that selectively affects the deacylation stage was used to determine the rate-limiting stage in the enteropeptidase hydrolysis of Nalpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, the highly efficient amide substrate GlyAsp4-Lys beta-naphthyl amide, and the low-efficiency peptide substrate VLSAADK-GNVKAAWG (where a hyphen denotes the hydrolysis site). The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

2.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The structure of the mixed anhydride, acyl-enzyme intermediate of the esterolytic reaction of carboxypeptidase A is characterized by application of cryoenzymologic, magnetic resonance, and molecular graphics methods with use of the Co2+-substituted enzyme and the specific spin-label ester substrate O-3-(2,2,5,5-tetra-methylpyrrolinyl-1-oxyl)-propen-2-oyl-l-β-phenyllactate. A radial separation of 7·7 Å between the active site Co2+ and the nitroxide group in the low temperature-stabilized acyl-enzyme intermediate is determined on the basis of their spin-spin (dipole-dipole) interactions. Application of molecular graphics techniques shows that the only configuration of the substrate that is sterically accommodated by the active site yields a calculated metal ion-to-nitroxide distance of 7·8 Å. Steric accommodation of the spin-label in the active site requires severe torsional distortion around the aliphatic double bond of the propenoyl side-chain. Examination of the structure of the enzyme: spin-label intermediate reveals that the distortion arises from steric interactions of the pyrrolinyl group with the protein at a position that corresponds to the site occupied by the penultimate amide residue of an oligopeptide substrate from the site of cleavage. Together with kinetic data showing that hydrolysis of the spin-label is governed by rate-limiting deacylation, the results indicate that geometric distortion of substrates by secondary interactions with the enzyme, in general, is an obligatory part of the catalytic action of carboxypeptidase A. When viewed with respect to requirements for stereoelectronic control of bond cleavage in tetrahedral adducts of esters and amides (Deslongchamps, 1975) the results suggest that torsional distortion during catalysis results in rotation around the scissile bond of the substrate, and that this rotation is required to form the mixed anhydride reaction intermediate. These findings further support the interpretation that the hydrolysis of esters and amides catalyzed by carboxypeptidase A proceeds according to similar mechanisms except that formation of the mixed anhydride is rate-determining in peptide hydrolysis while deacylation of the mixed anhydride is rate-limiting in ester hydrolysis.Additionally, in this study application of the extension of the theory of the Solomon-Bloembergen-Morgan equations derived by Lindner (1965) for paramagnetic metal ions with S ≥ 1 demonstrates that the zero-field splitting of the high-spin Co2+ in the metal-substituted enzyme has no significant influence in determination of the relaxation enhancement of solvent protons by the active site metal ion.  相似文献   

4.
TEM-1 β-lactamase is the most common plasmid-encoded β-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A β-lactamases share several conserved residues including Ser70, Glu166, and Asn170 that coordinate a hydrolytic water involved in deacylation. Unlike Ser70 and Glu166, the functional significance of residue Asn170 is not well understood even though it forms hydrogen bonds with both Glu166 and the hydrolytic water. The goal of this study was to examine the importance of Asn170 for catalysis and substrate specificity of β-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn170 side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.  相似文献   

5.
Determination of individual rate constants for enzyme-catalyzed reactions is central to the understanding of their mechanism of action and is commonly obtained by stopped-flow kinetic experiments. However, most natural substrates either do not fluoresce/absorb or lack a significant change in their spectra while reacting and, therefore, are frequently chemically modified to render adequate molecules for their spectroscopic detection. Here, isothermal titration calorimetry (ITC) was used to obtain Michaelis–Menten plots for the trypsin-catalyzed hydrolysis of several substrates at different temperatures (278–318 K): four spectrophotometrically blind lysine and arginine N-free esters, one N-substituted arginine ester, and one amide. A global fitting of these data provided the individual rate constants and activation energies for the acylation and deacylation reactions, and the ratio of the formation and dissociation rates of the enzyme–substrate complex, leading also to the corresponding free energies of activation. The results indicate that for lysine and arginine N-free esters deacylation is the rate-limiting step, but for the N-substituted ester and the amide acylation is the slowest step. It is shown that ITC is able to produce quality kinetic data and is particularly well suited for those enzymatic reactions that cannot be measured by absorption or fluorescence spectroscopy.  相似文献   

6.
The activity and stability of native subtilisin Karlsberg and subtilisin 72 and their complexes with sodium dodecyl sulfate (SDS) in organic solvents were studied. The kinetic constants of the hydrolysis of specific chromogenic peptide substrates Z-Ala-Ala-Leu-pNA and Glp-Ala-Ala-Leu-pNA by the subtilisins were determined. It was found that the subtilisin Karlsberg complex with SDS in anhydrous organic solvents is an effective catalyst of peptide synthesis with multifunctional amino acids in positions P 1 and P 1 (Glu, Arg, and Asp) containing unprotected side ionogenic groups.  相似文献   

7.
A comparative study of secondary specificities of enteropeptidase and trypsin was performed using peptide substrates with general formula A-(Asp/Glu) n -Lys(Arg)--B, where n = 1-4. This was the first study to demonstrate that, similar to other serine proteases, enteropeptidase has an extended secondary binding site interacting with 6-7 amino acid residues surrounding the peptide bond to be hydrolyzed. However, in the case of typical enteropeptidase substrates containing four negatively charged Asp/Glu residues at positions P2-P5, electrostatic interaction between these residues and the secondary site Lys99 of the enteropeptidase light chain is the main factor that determines hydrolysis efficiency. The secondary specificity of enteropeptidase differs from the secondary specificity of trypsin. The chromophoric synthetic enteropeptidase substrate G5DK-F(NO2)G (k cat/K m = 2380 mM–1·min–1) is more efficient than the fusion protein PrAD4K-P26 (k cat/K m = 1260 mM–1·min–1).  相似文献   

8.
The isomerization rate of aspartic acid (Asp) residue is known to be affected by the three-dimensional structures of peptides and proteins. Although the isomerized Asp residues were experimentally observed, structural features which affect the isomerization cannot be elucidated sufficiently because of protein denaturation and aggregation. In this study, molecular dynamics (MD) simulations were conducted on three αA-crystallin peptides (T6, T10, and T18), each containing a single Asp residue with different isomerization rate (T18 > T6 > T10) to clarify the structural factors of Asp isomerization tendency. For MD trajectories, distances between side-chain carboxyl carbon of Asp and main-chain amide nitrogen of (n + 1) residue (Cγ–N distances), root mean square fluctuations (RMSFs), and polar surface areas for main-chain amide nitrogen of (n + 1) residues (PSAN) were calculated, because these structural features are considered to relate to the formations of cyclic imide intermediates. RMSFs and PSAN are indexes of peptide backbone flexibilities and solvent exposure of the amide nitrogen, respectively. The average Cγ–N distances of T10 was longer than those of the other two peptides. In addition, the peptide containing Asp residue with a higher isomerization rate showed higher flexibility of the peptide backbone around the Asp residue. PSAN for amide nitrogen in T18 were much larger than those of other two peptides. The computational results suggest that Asp-residue isomerization rates are affected by these factors.  相似文献   

9.
In the acylation reaction of serine proteases the effect of amino acid residues on the geometrical change of the catalytic site from Michaelis to tetrahedral state was studied by using ab initio molecular orbital calculations. Amino acid residues in the catalytic site and the peptide substrate were calculated as a quantum mechanical region, and all the other amino acid residues and the calcium ion were included in the calculation as the electrostatic effects. The effects of Asp102, Asp194, N-terminus and the oxyanion binding site are large. The oxyanion binding site directly stabilizes the tetrahedral substrate. Asp102 stabilizes the enzyme intermediate, interacting with the protonated His57 residue. In order to elucidate the roles of Asp102 and the oxyanion binding site, energy decomposition analyses were done for the intermolecular interactions. The contribution of Asp102 and the oxyanion binding site to the decrease of energy in the geometrical change is due to the electrostatic effect. The energies of the proton shuttle from Ser195 Oγ to the leaving group of the substrate were calculated for amide and ester substrate models.  相似文献   

10.
Steady-state kinetic parameters were determined for the human leukocyte elastase catalyzed hydrolysis of a series of peptide-based thiobenzyl esters and p-nitroanilides. The peptide units are MeOSuc-Val, MeOSuc-Alan-Pro-Val (n = 0-2), and MeOSuc-Alan-Pro-Ala (n = 1 or 2). The results of this study suggest five important mechanistic features for HLE. Few important remote subsite contacts are established in the Michaelis complex. Full recognition and tight binding of the substrate occurs in the transition state for acylation. The P3-S3 interaction is critical during acylation. Subsite contacts are unimportant in deacylation. P1 specificity is regulated by peptide length. An important steady-state kinetic consequence of this specificity is that the rate-limiting step of kc for p-nitroanilide hydrolysis changes from acylation to deacylation as the peptide chain is lengthened.  相似文献   

11.
The formation of isoaspartate (isoAsp) from asparaginyl or aspartyl residues is a spontaneous post-translational modification of peptides and proteins. Due to isopeptide bond formation, the structure and possibly function of peptides and proteins is altered. IsoAsp modifications within the peptide chain have been reported for many cytosolic proteins. Amyloid peptides (Aβ) deposited in Alzheimer’s disease may carry an N-terminal isoAsp-modification. Here, we describe a quantitative investigation of isoAsp-formation from N-terminal Asn and Asp using model peptides similar to the Aβ N-terminus. The study is based on a newly developed separation of peptides using capillary electrophoresis (CE). 1H NMR was employed to validate the basic finding of N-terminal isoAsp-formation from Asp and Asn. Thereby, the isomerization of Asn at neutral pH (0.6 day?1, peptide NGEF) is approximately six times faster than that within the peptide chain (AANGEF). The difference in velocity between Asn and Asp isomerization is approximately 50-fold. In contrast to N-terminal Asn, Asp isomerization is significantly accelerated at acidic pH. The kinetic solvent isotope (k D2O/k H2O) effect of 2.46 suggests a rate-limiting proton transfer in isoAsp-formation. The proton inventory is consistent with transfer of one proton in the transition state, supporting the previous notion of rate-limiting deprotonation of the peptide backbone amide during succinimide-intermediate formation. The study provides evidence for a spontaneous N-terminal isoAsp-formation within peptides and might explain the accumulation of N-terminal isoAsp in amyloid deposits.  相似文献   

12.
Investigation of the active center of rat pancreatic elastase   总被引:1,自引:0,他引:1  
We have isolated rat pancreatic elastase I (EC 3.4.21.36) using a fast two-step procedure and we have investigated its active center with p-nitroanilide substrates and trifluoroacetylated inhibitors. These ligands were also used to probe porcine pancreatic elastase I whose amino acid sequence is 84% homologous to rat pancreatic elastase I as reported by MacDonald, et al. (Biochemistry 21, (1982) 1453-1463). Both proteinases exhibited non-Michaelian kinetics for substrates composed of three or four residues: substrate inhibition was observed for most enzyme substrate pairs, but with Ala3-p-nitroanilide, rat elastase showed substrate inhibition, whereas porcine elastase exhibited substrate activation. With most of the longer substrates, Michaelian kinetics were observed. The kcat/Km ratio was used to compare the catalytic efficiency of the two elastases on the different substrates. For both elastases, occupancy of subsite S4 was a prerequisite for efficient catalysis, occupancy of subsite S5 further increased the catalytic efficiency, P2 proline favored catalysis and P1 valine had an unfavorable effect. Rat elastase has probably one more subsite (S6) than its porcine counterpart. The rate-limiting step for the hydrolysis of N-succinyl-Ala3-p-nitroanilide by rat elastase was essentially acylation, whereas both acylation and deacylation rate constants participated in the turnover of this substrate by porcine elastase. For both enzymes, trifluoroacetylated peptides were much better inhibitors than acetylated peptides and trifluoroacetyldipeptide anilides were more potent than trifluoroacetyltripeptide anilides. A number of quantitative differences were found, however, and with one exception, trifluoroacetylated inhibitors were less efficient with rat elastase than with the porcine enzyme.  相似文献   

13.
The substrate specificity of dipeptidyl peptidase IV (dipeptidyl peptide hydrolase, EC 3.4.14.5) from pig kidney was investigated, using a series of substrates, in which the amino-acid residue in position P1, a structural derivative of proline, was altered with respect to ring size and substituents. It was demonstrated that dipeptidyl peptidase IV hydrolyses substrates of the type Ala-X-pNA, where X is proline (Pro), (R)-thiazolidine-4-carboxylic acid (Thz), (S)-pipecolic acid (Pip), (S)-oxazolidine-4-carboxylic acid (Oxa), or (S)-azetidine-2-carboxylic acid (Aze). The ring size and ring structure of the residue in the P1 position influence the rate of enzyme-catalysed hydrolysis of the substrate. The highest kcat value (814 s-1) was found for Ala-Aze-pNA. In contrast, the kcat value for Ala-Pro-pNA is nearly 55 s-1. With all substrates of this series, the rate-limiting step of the hydrolysis by dipeptidyl peptidase IV is the deacylation reaction. Compounds of substrate-like structure, in which the P2 residue has an R-configuration, are not hydrolysed by dipeptidyl peptidase IV.  相似文献   

14.
Peptidyl-prolyl isomerases (PPIases) are emerging as key regulators of many diverse biological processes. Elucidating the role of PPIase activity in vivo has been challenging because mutagenesis of active-site residues not only reduces the catalytic activity of these enzymes but also dramatically affects substrate binding. Employing the cyclophilin A PPIase together with its biologically relevant and natively folded substrate, the N-terminal domain of the human immunodeficiency virus type 1 capsid (CAN) protein, we demonstrate here how to dissect residue-specific contributions to PPIase catalysis versus substrate binding utilizing NMR spectroscopy. Surprisingly, a number of cyclophilin A active-site mutants previously assumed to be strongly diminished in activity toward biological substrates based only on a peptide assay catalyze the human immunodeficiency virus capsid with wild-type activity but with a change in the rate-limiting step of the enzymatic cycle. The results illustrate that a quantitative analysis of catalysis using the biological substrates is critical when interpreting the effects of PPIase mutations in biological assays.  相似文献   

15.
Quantitative structure activity analysis of the substrate types Ala-Ala-AR and Ala-Pro-AR containing different substituents in the aryl ring showed that the rate-limiting step in the hydrolysis of the alanine substrates by dipeptidyl peptidase IV occurs in th acylation reaction (kcat approximately k2). Probably, the tetrahedral intermediate of the acylation process has a real life time. The positive q-value of the Hammett-equation in k'cat suggests that the N-atom of the arylamide is charged more negatively in the transition state TI not equal to than in the original state TI. The analysis of the quantitative conformation activity relationship (QCAR) gives information on the steric situation in the tetrahedral intermediate of the acylation step near the transition state. The rate limiting step in the hydrolysis of the substrates of the proline type occurs in the deacylation reaction.  相似文献   

16.
The molecular basis for the substrate specificity of human caspase-3 has been investigated using peptide analog inhibitors and substrates that vary at the P2, P3, and P5 positions. Crystal structures were determined of caspase-3 complexes with the substrate analogs at resolutions of 1.7 A to 2.3 A. Differences in the interactions of caspase-3 with the analogs are consistent with the Ki values of 1.3 nM, 6.5 nM, and 12.4 nM for Ac-DEVD-Cho, Ac-VDVAD-Cho and Ac-DMQD-Cho, respectively, and relative kcat/Km values of 100%, 37% and 17% for the corresponding peptide substrates. The bound peptide analogs show very similar interactions for the main-chain atoms and the conserved P1 Asp and P4 Asp, while interactions vary for P2 and P3. P2 lies in a hydrophobic S2 groove, consistent with the weaker inhibition of Ac-DMQD-Cho with polar P2 Gln. S3 is a surface hydrophilic site with favorable polar interactions with P3 Glu in Ac-DEVD-Cho. Ac-DMQD-Cho and Ac-VDVAD-Cho have hydrophobic P3 residues that are not optimal in the polar S3 site, consistent with their weaker inhibition. A hydrophobic S5 site was identified for caspase-3, where the side-chains of Phe250 and Phe252 interact with P5 Val of Ac-VDVAD-Cho, and enclose the substrate-binding site by conformational change. The kinetic importance of hydrophobic P5 residues was confirmed by more efficient hydrolysis of caspase-3 substrates Ac-VDVAD-pNA and Ac-LDVAD-pNA compared with Ac-DVAD-pNA. In contrast, caspase-7 showed less efficient hydrolysis of the substrates with P5 Val or Leu compared with Ac-DVAD-pNA. Caspase-3 and caspase-2 share similar hydrophobic S5 sites, while caspases 1, 7, 8 and 9 do not have structurally equivalent hydrophobic residues; these caspases are likely to differ in their selectivity for the P5 position of substrates. The distinct selectivity for P5 will help define the particular substrates and signaling pathways associated with each caspase.  相似文献   

17.
Endothia parasitica protease hydrolyzes l-leucyl-l-leucine amide and l-leucyl-l-phenylalanine amide at the peptide bond. l-Phenylalanyl-l-leticine amide, N-carbobenzoxy-l-leucyl-l-phenylalanine amide, N-carbobenzoxy-l-leucyl-l-pheml-alanine, N-carbobenzoxy-l-phenylalanyl-l-valine amide, and l-leucyl-β-naphthyl-amide are not hydrolyzed. In contrast to the kinetics of hydrolysis of casein and oxidized B-chain of insulin and activation of trypsinogen by Endothia parasitica protease which are normal, reaction progress curves for hydrolysis of l-leucyl-l-leucine amide and l-leucyl-l-phenylalanine amide are sigrnoidal. Initially, the reaction rates were of the order of 0.5–2.5% of the maximum rates eventually attained. With increasing time of incubation the reaction rates became faster and faster until maximum rates were achieved. This abnormal behavior was not eliminated by recrystallization of substrate or by incubation of enzyme alone or with products of the reaction prior to addition of substrate. Addition of a new aliquot of substrate, vizl-leucyl-l-leucine amide, to the reaction prior to complete hydrolysis of all of a previous aliquot of the same substrate, or reactions containing a mixture of oxidized B chain of insulin and l-leucyl-l-leucine amide, gave normal reaction progress curves. The duration of abnormal behavior before a maximum rate was attained was a function of enzyme concentration and temperature but not of substrate concentration even though substrate was in less than saturating amounts. The reaction data follow second-order autocatalytic kinetics with respect to enzyme concentration. It is proposed that most of the enzyme is in an inactive form in absence of substrate but is rapidly converted to the active form on combination with a good substrate such as trypsinogen, casein, or oxidized B chain of insulin. However, with a poor substrate such as l-leucyl-l-leucine amide, conversion to active enzyme is mediated through formation of an active enzyme-inactive enzyme complex followed by combination with substrate and hydrolysis.  相似文献   

18.
Bacillus subtilis aminopeptidase hydrolyzed amino acid amides with a specificity similar to that determined using amino acyl-β-naphthylamides, but at much greater catalytic rates. Neutral and basic amino acid amides were the best substrates. A series of Leu and Lys NH2-terminal dipeptides hydrolyzed by Co2+-activated aminopeptidase showed that the kcatKm ratios for the Lys substrates were fourfold greater than the corresponding Leu substrates and that catalytic differences reflected the identity of COOH terminal residues. Greatest catalytic rates were obtained when aromatic residues were in the COOH terminal position of the substrate (Trp, Tyr, Phe); but, significant hydrolysis was achieved when aliphatic residues were COOH-terminal in the dipeptide. The Co2+-activated enzyme would not hydrolyze peptide bonds composed of the imide nitrogen of Pro, thus, bradykinin was not a substrate. However, the Co2+-activated enzyme removed sequentially the first four residues from eledoisin-related peptide and the A chain of bovine insulin.  相似文献   

19.
The activation volumes for kcat of the carboxypeptidase-Y-catalyzed hydrolysis of ester substrates were slightly negative (-1 to -4 ml/mol), while those for peptide and depsi-peptide analog were highly positive (+10 to +27 ml/mol). These values and the contrasting pH dependences of these two groups of the substrates are explained by a mechanism involving three ionic states of the enzyme and the second stable intermediate (acyl-enzyme). Esters are mostly rate-controlled by the deacylation step and peptides are controlled by both the acylation and the deacylation steps. Pressure increase induced a partial shift of the rate-determining step. Reaction volumes for Km-1 of peptide and depsi-peptide analog showed large and positive values (+16 to +29 ml/mol) which reflects the electrostatic interaction in the substrate recognition by this enzyme.  相似文献   

20.
P Carter  L Abrahmsén  J A Wells 《Biochemistry》1991,30(25):6142-6148
A mutant of the serine protease, subtilisin BPN', in which the catalytic His64 is replaced by Ala (H64A), is very specific for substrates containing a histidine, presumably by the substrate-bound histidine assisting in catalysis [Carter, P., & Wells, J.A. (1987) Science (Washington, D.C.) 237, 394-399]. Here we probe the catalytic mechanism of H64A subtilisin for cleaving His and non-His substrates. We show that the ratio of aminolysis to hydrolysis is the same for ester and amide substrates as catalyzed by the H64A subtilisin. This is consistent with formation of a common acyl-enzyme intermediate for H64A subtilisin, analogous to the mechanism of the wild-type enzyme. However, the catalytic efficiencies (kcat/KM) for amidase and esterase activities with His-containing substrates are reduced by 5000-fold and 14-fold, respectively, relative to wild-type subtilisin BPN, suggesting that acylation is more compromised than deacylation in the H64A mutant. High concentrations of imidazole are much less effective than His substrates in promoting hydrolysis by the H64A variant, suggesting that the His residue on the bound (not free) substrate is involved in catalysis. The reduction in catalytic efficiency kcat/KM for hydrolysis of the amide substrate upon replacement of the oxyanion stabilizing asparagine (N155G) is only 7-fold greater for wild-type than H64A subtilisin. In contrast, the reductions in kcat/KM upon replacement of the catalytic serine (S221A) or aspartate (D32A) are about 3000-fold greater for wild-type than H64A subtilisin, suggesting that the functional interactions between the Asp32 and Ser221 with the substrate histidine are more compromised in substrate-assisted catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号