首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jurkat lymphoblasts were stimulated by a monoclonal antibody against the CD3 membrane antigen and the evoked calcium signal was followed by the intracellular fluorescent calcium indicator indo-1. The technique applied allowed us to separately investigate the stimulus-induced intracellular calcium release and the calcium-influx pathways, respectively. In the same cells membrane potential was estimated by the fluorescent dye diS-C3-(5). The resting membrane potential of Jurkat lymphoblasts under normal conditions was between -55 and -60 mV. Membrane depolarization, obtained by increasing external K+ concentration, removing external Cl-, or by increasing the Na+/K+ leak permeability with gramicidin or PCMBS, did not induce calcium influx in the resting cells and did not influence the CD3 receptor-mediated internal calcium release, while strongly inhibited the receptor-mediated calcium influx pathway. Half-maximum inhibition of this calcium influx was observed at membrane potential values of about -35 to -40 mV and this inhibition did not depend on the external calcium concentration varied between 5 and 2500 microM. Membrane hyperpolarization by valinomycin did not affect either component of the calcium signal. The observed selective inhibition of the receptor-operated calcium influx pathway by membrane depolarization is probably an important modulator of calcium-dependent cell stimulation.  相似文献   

2.
The existence of Ca2+-dependent K+ channels in rat thymocytes, their activation by Ca2+-ionophore A23187 and concanavalin A, and inhibition by EGTA and quinine have been demonstrated using K+-electrode and fluorescent potential probe diS-C3-(5). The results indicate that Ca2+-dependent K+ channels take part in the increase of potassium permeability, one of the early events in mitogenic stimulation of lymphocytes.  相似文献   

3.
The lysosomal proton pump is electrogenic   总被引:11,自引:0,他引:11  
Lysosomes were purified approximately 40-fold from rat kidney cortex by differential and Percoll density gradient centrifugation. In a sucrose medium, the lysosomes quenched the fluorescence of the potential sensitive dye diS-C3-(5) (3,3'-dipropylthiocarbo-cyanine iodide) in a time-dependent manner, indicating that the dye accumulates within the lysosomal interior. After treatment of the lysosomes with valinomycin, the dye fluorescence displayed a logarithmic dependence upon the external K+ concentration; thus, the fluorescence signal provides a semiquantitative measure of the lysosomal membrane potential (delta psi). In the absence of valinomycin, lysosomal quenching of diS-C3-(5) fluorescence was partially reversed by agents which collapse the lysosomal pH gradient (ammonium sulfate, chloroquine, and K nigericin), suggesting that the proton gradient across the lysosomal membrane contributes to delta psi. A rapid increase in diS-C3-(5) fluorescence, indicative of an increase in delta psi, was observed upon the addition of Mg-ATP to the lysosomes. The ATP-dependent fluorescence change was inhibited by protonophores, K valinomycin, permeable anions, and N-ethylmaleimide, but was unaffected by ammonium sulfate, K nigericin, or sodium vanadate. Oligomycin had no effect at concentrations below 2 micrograms/ml; at higher concentrations, oligomycin partially inhibited the fluorescence response to Mg-ATP, but it also inhibited the fluorescence response to K valinomycin, suggesting that it had modified the permeability of the lysosomal membrane. Dicylohexylcarbodiimide behaved similarly to oligomycin. Mg-ATP also altered the lysosomal distribution of 86Rb+ (in the presence of valinomycin) and S[14C]CN-, consistent with an increase in the potential of the lysosomal interior of 40-50 mV. The results demonstrate that the lysosomal proton pump is electrogenic.  相似文献   

4.
Effects of the Ca2+-ionophore A23187 and concanavalin A on the membrane potential of human lymphocytes and rat thymocytes have been studied using the fluorescent potential probe diS-C3-(5). At concentrations of 10(-8) to 10(-6) M A23187 changes the membrane potential, inducing both hyper- and depolarization. Depending on concentrations of A23187 and the external Ca2+, and on the type of lymphocytes, one of these effects predominates. The hyperpolarization induced by A23187 is caused by activation of Ca2+-dependent K+ channels. It is blocked by quinine and high concentrations of extracellular K+. The dependence of Ca2+-activated K+ transport on extracellular Ca2+ and its sensitivity to calmodulin antagonists is different for human lymphocytes and for thymocytes. As distinct from lymphocytes, in thymocytes calmodulin is not involved in activation of Ca2+-dependent K+ transport. The depolarization induced in lymphocytes by A23187 is caused by an increase in Na+ permeability of the lymphocyte plasma membrane: it is eliminated in a low-Na+ medium. At mitogenic concentrations concanavalin A does not change the membrane potential of the lymphocytes. The results obtained permit elucidation of the relationship between two early events in lymphocyte activation, namely the increase in intracellular Ca2+ concentration and the increase in lymphocyte plasma membrane permeabilities to monovalent cations.  相似文献   

5.
Capping induced by anti-Ig antibody on mouse spleen lymphocytes was found to proceed normally over a wide range of membrane potentials from approx. 0 to ?65 mV, as estimated with fluorescent probes. The potential was manipulated by ionic substitution in the medium and/or application of gramicidin.Various agents which inhibit capping had differing effects on the membrane potential, some producing no measurable change, others depolarising the cells. In particular valinomycin (10?7 M) was found to inhibit capping in cells both slightly hyperpolarised from the normal resting potential, and fully depolarised. Valinomycin was found to deplete the lymphocytes markedly of ATP and this effect was sufficient to account for the inhibition of capping.Capping occurred in a simplified (sucrose) medium lacking Na+, K+ and Ca2+, suggesting that fluxes across the plasma membrane of these ions are not required.It is concluded that after ligand binding, some reorganisation of receptor protein at the inner face of the membrane is the sufficient stimulus for the intracellular rearrangements involved in capping.  相似文献   

6.
The effect of the specific potassium (K+) ionophore valinomycin on increase in intracellular calcium concentration [( Ca2+]i) was studied in vascular smooth muscle cells (VSMC). Valinomycin at more than 10(-9) M dose-dependently suppressed phasic increase in [Ca2+]i in VSMC induced by angiotensin II (AII) in both control and Ca2+-free solution, indicating that it suppressed the release of Ca2+ from intracellular Ca2+ stores. Nicorandil and cromakalim, which are both K+ channel openers, also suppressed the increases in [Ca2+]i induced by AII in the Ca2+ free solution. However, valinomycin did not suppress AII-induced production of inositol 1,4,5-trisphosphate (IP3), which is known to mediate the release of Ca2+. These results indicate that decrease of intracellular K+ induced by valinomycin suppressed the release of Ca2+ from intracellular Ca2+ stores induced by IP3.  相似文献   

7.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

8.
No methods are currently available for fully reliable monitoring of membrane potential changes in suspensions of walled cells such as yeast. Our method using the Nernstian cyanine probe diS-C3(3) monitors even relatively fast changes in membrane potential delta psi by recording the shifts of probe fluorescence maximum lambda max consequent on delta psi-dependent probe uptake into, or exit from, the cells. Both increased [K+]out and decreased pHout, but not external NaCl or choline chloride depolarise the membrane. The major ion species contributing to the diS-C3(3)-reported membrane potential in S. cerevisiae are thus K+ and H+, whereas Na+ and Cl- do not perceptibly contribute to measured delta psi. The strongly pHout-dependent depolarisation caused by the protonophores CCCP and FCCP, lack of effect of the respiratory chain inhibitors rotenone and HQNO on the delta psi, as well as results obtained with a respiration-deficient rho- mutant show that the major component of the diS-C3(3)-reported membrane potential is the delta psi formed on the plasma membrane while mitochondrial potential forms a minor part of the delta psi. Its role may be reflected in the slight depolarisation caused by the F1F0-ATPase inhibitor azide in both rho- mutant and wildtype cells. Blocking the plasma membrane H(+)-ATPase with the DMM-11 inhibitor showed that the enzyme participates in delta psi build-up both in the absence and in the presence of added glucose. Pore-forming agents such as nystatin cause a fast probe entry into the cells signifying membrane damage and extensive binding of the probe to cell constituents reflecting obviously disruption of ionic balance in permeabilised cells. In damaged cells the probe therefore no longer reports on membrane potential but on loss of membrane integrity. The delta psi-independent probe entry signalling membrane damage can be distinguished from the potential-dependent diS-C3(3) uptake into intact cells by being insensitive to the depolarising action of CCCP.  相似文献   

9.
本实验中测量了缬氨霉素对双层平板膜系统的电性质和紫膜碎片BLM上光电响应的作用.实验结果表明:缬氨霉素对K~+很灵敏,它可使大豆磷脂BLM的膜电阻下降近四个量级,膜的稳定性也下降.它对Na~+也有作用,但其作用不如K~+那么明显.在缬氨霉素作用下,K~+对紫膜碎片BLM光电响应的影响十分明显,它可以使光电压完全消失.Na~+对紫膜碎片BLM的作用则比K~+的作用小得多.  相似文献   

10.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

11.
A method is described for quantitative measurement of lymphocyte transmembrane electrical potential difference (psi) by flow cytometric recording of the oxonol dye fluorescence of single cells. Both the simultaneous collection and analysis of multiple optical parameters and the use of a negatively charged oxonol probe allowed more accurate measurement of psi than may be obtained by bulk cell suspension techniques employing cationic voltage indicators. Mouse spleen and human blood lymphocyte psi was calculated to be -70 mV. T and B lymphocytes maintain a constant psi as extracellular K+ is varied from 2 to 10 mM and the deviation from K+ equilibrium potentials (EK) is shown to result from Na+ permeability. At [K+]o values greater than 10 mM, lymphocytes behave as K+ electrodes. Examination of lymphocyte subsets showed that hyperpolarization induced by the Ca2+ ionophore A23187 occurs only in T cells. This response was identified as activation of a Ca2+-sensitive K+ channel by pharmacologic manipulations. Hence, T cells depolarized by 4-aminopyridine (4-AP, 10 mM) were observed to return to resting psi by A23187-induced elevation of [Ca2+]i. Cells depolarized by quinine (100 microM) were unaffected by A23187. The Ca2+-activated channel does not contribute to resting psi in T cells since it may be selectively blocked by quinine (20 microM) or modulated by calmodulin antagonists (5 microM trifluperazine) without affecting resting psi.  相似文献   

12.
Valinomycin inhibited cap formation induced by antibodies to Ig-molecules in human lymphocytes. At the concentration of valinomycin used in this study the inhibitory effects: (1) could not be explained by impaired cell viability, (2) were reversed by washing the drug from the medium and (3) were prevented by increasing the concentration of K+ in the external medium. These results suggest that valinomycin may act, in part, by altering the electrical properties of the cell membrane and suggest a role for membrane potential and cation permeability and flux in the modulation of membrane receptors.  相似文献   

13.
Sodium and potassium ion contents and fluxes of isolated resting human peripheral polymorphonuclear leukocytes were measured. In cells kept at 37 degrees C, [Na]i was 25 mM and [K]i was 120 mM; both ions were completely exchangeable with extracellular isotopes. One-way Na and K fluxes, measured with 22Na and 42K, were all approximately 0.9 meq/liter cell water . min. Ouabain had no effect on Na influx or K efflux, but inhibited 95 +/- 7% of Na efflux and 63% of K influx. Cells kept at 0 degree C gained sodium in exchange for potassium ([Na]i nearly tripled in 3 h); upon rewarming, ouabain-sensitive K influx into such cells was strongly enhanced. External K stimulated Na efflux (Km approximately 1.5 mM in 140-mM Na medium). The PNa/PK permeability ratio, estimated from ouabain insensitive fluxes, was 0.10. Valinomycin (1 microM) approximately doubled PK. Membrane potential (Vm) was estimated using the potentiometric indicator diS-C3(5); calibration was based on the assumption of constant-field behavior. External K, but not Cl, affected Vm. Ouabain caused a depolarization whose magnitude dependent on [Na]i. Sodium-depleted cells became hyperpolarized when exposed to the neutral exchange carrier monensin; this hyperpolarization was abolished by ouabain. We conclude that the sodium pump of human peripheral neutrophils is electrogenic, and that the size of the pump-induced hyperpolarization is consistent with the membrane conductance (3.7-4.0 microseconds/cm2) computed from the individual K and Na conductances.  相似文献   

14.
In order to determine whether disruption of mitochondrial function could trigger apoptosis in murine haematopoietic cells, we used the potassium ionophore valinomycin. Valinomycin induces apoptosis in the murine pre-B cell line BAF3, which cannot be inhibited by interleukin-3 addition or Bcl-2 over-expression. Valinomycin triggers rapid loss of mitochondrial membrane potential. This precedes cytoplasmic acidification, which leads to cysteine-active-site protease activation, DNA fragmentation and cell death. Bongkrekic acid, an inhibitor of the mitochondrial permeability transition, prevents acidification and subsequent induction of apoptosis by valinomycin.  相似文献   

15.
1. We have monitored the plasma-membrane potential of lymphocytes by measuring the accumulation of the lipophilic cation methyltriphenylphosphonium (TPMP+) in the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). 2. The mitogen concanavalin A causes a decrease in TPMP+ accumulation by pig lymphocytes corresponding to a 3 mV depolarization with 2 1/2 min. Concanavalin A does not alter 86Rb+ uptake in the first 30 min. 3. In contrast concanavalin A increased TPMP+ accumulation and the rate of Rb+ uptake in mouse thymocytes. This is consistent with a previous proposal that the mitogen induces a hyperpolarization of mouse thymocytes as a result of stimulation of a Ca2+-dependent K+ channel. 4. Studies with the calcium ionophore A23187 and quinine (an inhibitor of the Ca2+-dependent K+ channel) suggest that the channel is partially closed in mouse resting thymocytes but is almost fully active in pig resting cells. Thus concanavalin A hyperpolarizes mouse thymocytes by activating the Ca2+-dependent K+ channel but cannot do so in pig lymphocytes because the channel is already maximally activated. 5. The 3mV depolarization of pig cells cannot be explained by a decrease in electrogenic K+ permeability.  相似文献   

16.
The membrane potential of Ehrlich ascites tumor cells and the effects of valinomycin and ouabain upon it have been determined. The membrane potential in control cells was 12.0 mV, inside negative. Neither valinomycin nor ouabain alone affected this value. However, valinomycin and ouabain in combination resulted in a slight hyperpolarization of the membrane. Concomitant determinations of cellular Na+, K+ and Cl- showed that valinomycin induced net losses of K+ and Cl- and a net gain in Na+ when compared to ouabain-inhibited cells. K+ permeability was increased by approximately 30% in the presence of valinomycin. In addition, valinomycin caused a rapid depletion of cellular ATP. Inhibition of Na/K transport by ouabain was without sparing effect on the rate of ATP depletion. Possible mechanisms for the electroneutral increase in K+ permeability induced by valinomycin are discussed.  相似文献   

17.
The effect of membrane potential on the passive 45Ca2+ uptake by cardial sarcolemmal vesicles was investigated. Membrane potentials were generated by the K+ gradient in the presence of valinomycin and were measured using fluorescent dye diS-C3-(5). It was shown that the 45Ca2+ influx into vesicles increased twice after membrane depolarization. Evaluation of the 45Ca2+ influx over a wide range of membrane potentials produced a profile similar to that of current-voltage relationships for single calcium channels in isolated cardiomyocytes. Passive 45Ca2+ transport was inhibited by 1 mM Cd2+ and Co2+. It is suggested that the voltage-dependent Ca2+ influx into vesicles occurs through Ca2+-channels.  相似文献   

18.
The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3'-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be -57 +/- 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 microM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.  相似文献   

19.
The fluorescence, F, of two dicarbocyanine dyes, diS-C3(5) and diI-C3(5), depends both on the membrane potential, E, and on the intracellular pH, pHc, or human red blood cells. Compositions of isotonic media have been devised in which the equilibrium Donnan potential, E, varies at constant pHc and in which pHc varies at constant E. Dye fluorescence measurements in these suspensions yield calibrations of +1.7 % delta F/mV for diS-C3(5) and +0.6 % delta F/mV for diI-C3 (5). While pHo does not affect F of either dye, changes in pHc of 0.1 unit at constant E cause changes of F equivalent to those induced by 2--3mV. Based on these results, a method is given for estimating changes in E from dye fluorescence in experiments in which E and pHc co-vary. The relation of F to E also depends in a complex way on the type and concentration of cells and dye, and the wavelengths employed. The equilibrium calibration of dye fluorescence, when applied to diffusion potentials induced by 1 microM valinomycin, yields a value for the permeability ratio, PK.VAL/PCl, of 20 +/- 5, in agreement with previous estimates by other methods. The calibration of F is identical both for diffusion potentials and for equilibrium potentials, implying that diC-C3(5) responds to changes in voltage independently of ionic fluxes across the red cell membrane. Changes in the absorption spectra of dye in the presence of red cells in response to changes in E show that formation of nonfluorescent dimers contributes to fluorescence quenching of diS-C3(5). In contrast, only a hydrophobic interaction of dye monomers need be considered for diI-C3(5), indicating the occurrence of a simpler mechanism of fluorescence quenching.  相似文献   

20.
Calcium-depleted human neutrophils are depolarised when suspended in calcium-free media containing sodium ions, and are repolarised by extracellular replenishment of Ca2+. The depolarisation is due to a high inward sodium current, which is blocked by calcium and by several other divalent cations, but not by barium. Addition of calcium results in a rise in the cytosolic concentration from approx. 20 nM to the resting level of approx. 130 nM. Calcium influx is strongly accelerated by a voltage-gated calcium channel. This channel might be responsible for the depolarising Na+ current in the absence of divalent cations. In the polarised state the neutrophil membrane has a high intrinsic permeability to K+, which may be low or absent in the depolarised state. Generation of membrane potential from the depolarised state is mainly due to the electrogenic sodium/potassium pump. However, the resting potential of about -75 mV is maintained primarily by the K+ conductance, and only to a small extent by the sodium/potassium pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号