首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of the DBP(n) fluorescent symmetric dimeric bisbenzimidazoles in which the bisbenzimidazole fragments were attached to an oligomeric linker with the 1,4-piperazine residue in its center were prepared. The DBP(n) molecules were distinguished by the number of methylene groups n (where n = 1, 2, 3, 4) in the linker. The DBP(n) synthesis was based on a condensation of the monomeric bisbenzimidazole (MB) with 1,4-piperazinedialkylcarbonic acids. The ability of the DBP(n) dimeric bisbenzimidazoles to form complexes with the double-stranded DNA was demonstrated by a complex of physicochemical methods, including spectroscopy in the visual UV-area, circular dichroism (CD), and fluorescence. The DBP(1–4) molecules were localized in the DNA minor groove by the CD method with the use of cholesteric liquid-crystalline dispersions (CLCD) of the double-stranded DNA. The DBP(n) dimeric bisbenzimidazoles were easily soluble in water, penetrated through cellular and nuclear membranes, and stained DNA in living cells distinct from the previously synthesized DB(n) series.  相似文献   

2.
Cancer cells are characterized by hypermethylation of the promoter regions of tumor suppressor genes. DNA methyltransferase inhibitors reactivate the genes, pointing to DNA methyltransferases as potential targets for anticancer therapy. Dimeric bisbenzimidazoles varying in the length of an oligomeric linker between two bisbenzimidazole residues (DB(n), where n is the number of methylene groups in the linker) were earlier shown to efficiently inhibit methylation of DNA duplexes by murine DNA methyltransferase Dnmt3a. Here, some of the compounds were tested for cytotoxicity, cell penetration, and effect on genomic DNA methylation in F-977 fetal lung fibroblasts and HeLa cervical cancer cells. Within the 0–60 μM concentration range, only DB(11) exerted a significant toxic effect on normal cells, whereas the effects of DB(n) on cancer cells were not significant. DB(1) and DB(3) slightly stimulated proliferation of HeLa and F-977 cells, respectively. DB(1) and DB(3) penetrated into the nuclei of HeLa and F-977 cells and accumulated predominantly in or near the nucleolus, while DB(11) was incapable of nuclear penetration. HeLa cells incubated with 26 μM DB(1) or DB(3) displayed a decrease in methylation of the 18S rRNA gene, which was in the regions of predominant accumulation of DB(1) and DB(3). The same DB(3) concentration exerted a similar effect on F-977 cells. However, the overall genomic DNA methylation level remained unchanged in both of the cell lines. The results indicated that DB(n)-type compounds can be used to demethylate certain genes and are thereby promising as potential anticancer agents.  相似文献   

3.
Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F q (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f x with the help of the transformation matrix U?=?WB ?(BWB ?)?1 (B: Wilson’s B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W?=?M ?1 (M: mass matrix) has numerical advantages with regard to the choice W?=?I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C–H and C–C bond strength.  相似文献   

4.
Two derivatives of 2-(4-acetylanilino)quinolines (IIIa, b) were synthesized as scaffolds for synthesis of open chalcone analogues (Va-f) through Claisen-Schmidt condensation with a set of aromatic aldehydes (IVa-d). Derivatives (Va, b) were further manipulated into cyclic ??,??-unsaturated ketones by Michael-addition of acetylacetone and ethylacetoacetate affording derivatives (VI?CVII). Deethoxycarboxylation of derivatives (VIIa, b) afforded cyclohexenons (VIIIa, b) allowing formation of a mini library of ??,??-unsaturated ketones for screening their anticancer and synergistic anticancer effect with doxorubicin using colon cancer cell line (Caco-2). Two open enones, (Vb) and (Ve), showed significant anticancer activity with IC50 of 5.0 and 2.5 ??M respectively. Only one cyclic enone, (VIa) showed synergistic anticancer activity with doxorubicin at 10 ??M.  相似文献   

5.
Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N′-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10M?1) and the apparent binding constant (K app = 6.67 × 10M?1) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.  相似文献   

6.
Seven organorhenium pentylcarbonate compounds (PC1PC7) have been synthesized. DNA-binding studies of the PC-series compounds using electronic spectroscopy and gel electrophoresis suggest that the compounds presumably bind to DNA in an intercalative mode. The intrinsic binding constants for PC4, PC6, and PC7 were found to be 1.6 × 104, 3.9 × 104, and 4.2 × 104 M?1, respectively. The X-ray structure determinations and density functional theory calculations indicate that the polypyridyl ligands in the compounds are nearly planar facilitating DNA binding through an intercalation mechanism. Cytotoxicity studies of 10 µM pentylcarbonate compounds against HTB-12 human astrocytoma brain cancer cells were studied for 48 h. It was observed that each of the pentylcarbonate compounds is active against the cancer cells. However, under analogous conditions, CRL-2005 rat astrocyte normal brain cells are not affected significantly.  相似文献   

7.
New analogues of the Gly-Pro-Arg and Arg-Gly-Asp fragments of fibrinogen were synthesized: Gly-Pro-Arg-Pro (I), Gly-Pro-Arg-Pro-Met-OMe (II), Gly-Pro-Arg-Pro-Phe (III), Gly-Pro-Arg-Pro-Asp (IV), Gly-Pro-Arg-Pro-Glu (V), and Arg-Asn-Trp-Asp (VI). Their effect on the activity of proteases of various types was studied with the method of lysis of fibrin plates. All the peptides were found to inhibit plasmin activity (by 60–85%) and the γ-subunit of nerve growth factor (by 55–93%). Tetrapeptide (VI) proved to be an effective inhibitor of tissue activator of plasminogen and the γ-subunit of nerve growth factor (by 96 and 93%, respectively). The peptides exerted practically no effect on the activity of urokinase and moderately inhibited the activity of streptokinase [(III), IV), and (VI)], papain [(I), (II), IV), and (VI)], subtilisin [(V) and (VI)], α-chymotrypsin [(III), (V), and VI)], and Bacillus subtilis metalloprotease (VI). They inhibit trypsin [except for (I) and (III)] when applied on fibrin plates at a concentration of 1 × 10?2 M, while, at the concentration of 1 × 10?3 M, (I) and (II) induced an increase in proteolytic activity by 35 and 47%, respectively.  相似文献   

8.
A dimeric GdAAZTA-like complex (AAZTA is 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid) bearing an adamantyl group (Gd2 L1) able to form strong supramolecular adducts with specific hosts such as β-cyclodextrin (β-CD), poly-β-CD, and human serum albumin (HSA) is reported. The relaxometric properties of Gd2 L1 were investigated in aqueous solution by measuring the 1H relaxivity as a function of pH, temperature, and magnetic field strength. The relaxivity of Gd2 L1 (per Gd atom) at 40 MHz and 298 K is 17.6 mM?1 s?1, a value that remains almost constant at higher fields owing to the great compactness and rigidity of the bimetallic chelate, resulting in an ideal value for the rotational correlation time for high-field MRI applications (1.5–3.0 T). The noncovalent interaction of Gd2 L1 with β-CD, poly-β-CD, and HSA and the relaxometric properties of the resulting host–guest adducts were investigated using 1H relaxometric methods. Relaxivity enhancements of 29 and 108 % were found for Gd2 L1–β-CD and Gd2 L1–poly-β-CD, respectively. Binding of Gd2 L1 to HSA (K A = 1.2 × 104 M?1) results in a remarkable relaxivity of 41.4 mM?1 s?1 for the bound form (+248 %). The relaxivity is only limited by the local rotation of the complex within the binding site, which decreases on passing from Gd2 L1–β-CD to Gd2 L1–HSA. Finally, the applicability of Gd2 L1 as tumor-targeting agent through passive accumulation of the HSA-bound adduct was evaluated via acquisition of magnetic resonance images at 1 T of B16-tumor-bearing mice. These experiments indicate a considerable signal enhancement (+160 %) in tumor after 60 min from the injection and a very low hepatic accumulation.  相似文献   

9.
In the present study, the interaction between GC-rich sequence of bcl-2 gene P1 promoter (Pu39) and two ruthenium (II) polypyridyl complexes, [Ru(bpy)2(tip)]2+ (1) and [Ru(phen)2(tip)]2+ (2), was investigated by UV–Visible, fluorescence spectroscopy, circular dichroism, fluorescence resonance energy transfer melting assay and polymerase chain reaction stop assay. Those experimental results indicated that the two complexes can effectively stabilize the G-quadruplex of Pu39. It was found that the complex 2 exhibited greater cytotoxic activity than 1 against human Hela cells and can enter into Hela cells in a short period of time to effectively induce apoptosis of cells. Further experiments found that complexes 1 and 2 had as potent inhibitory effects on ECV-304 cell migration as suramin. Those noteworthy results provide new insights into the development of anticancer agents for targeting G-quadruplex DNA.  相似文献   

10.
The reaction force F(ξ) is the negative gradient of the potential energy of a chemical process along the intrinsic reaction coordinate ξ. We extend the rigorous concept of F(ξ) to the “activation strain model” of Bickelhaupt et al., to formulate the “strain” force F str(ξ) that retards a reaction and the “interaction” force F int(ξ) that drives it. These are investigated for a group of Diels-Alder cycloadditions. The results fully support the interpretation of the minimum of F(ξ) as defining the beginning of the transition from deformed reactants to eventual products.  相似文献   

11.
12.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

13.
A synchronous, concerted chemical process is rigorously divided by the reaction force F(R), the negative gradient of V(R), into “reactant” and “product” regions which are dominated by structural changes and an intervening “transition” region which is electronically intensive. The reaction force constant κ(R), the second derivative of V(R), is negative throughout the transition region, not just at the nominal transition state, at which κ(R) has a minimum. This is consistent with experimental evidence that there is a transition region, not simply a specific point. We show graphically that significant nonsynchronicity in the process is associated with the development of a maximum of κ(R) in the transition region, which increases as the process becomes more nonsynchronous. (We speculate that for a nonconcerted process this maximum is actually positive.) Thus, κ(R) can serve as an indicator of the level of nonsynchronicity.
Figure
Profiles of potential energy V(R), reaction force F(R), and reaction force constant κ(R) along the intrinsic reaction coordinate R for a nonsynchronous concerted chemical reaction.  相似文献   

14.
3-Fluoro-4-(4-phenylpiperazin-l-yl)aniline (II) prepared from 3,4-difluoro nitrobenzene was converted to the corresponding Schiff bases (III) and (IV) by treatment with 4-methoxybenzaldehyde and indol-3-carbaldehyde, respectively. Treatment of amine (II) with 4-fluorophenyl isothiocyanate afforded the corresponding thiourea derivative (V). Compound (V) was converted to thiazolidinone and thiazoline derivatives (VI) and (VII) by cyclocondensation with ethylbromoacetate or 4-chlorophenacylbromide, respectively. The synthesis of carbothioamide derivative (X) was performed starting from compound (II) by three steps. Treatment of compound (X) with sodium hydroxide, sulfuric acid, or chlorophenacyl bromide generated the corresponding 1,2,4-triazole (XI), 1,3,4-thiadiazole (XII), and 1,3-thiazolidinone (XIII) derivatives, respectively. The structural assignments of new compounds were based on their elemental analysis and spectral (IR, 1H-NMR, 13C-NMR, and LC-MS) data. In the antimicrobial activity study all the compounds revealed high anti-Mycobacterium smegmatis activity.  相似文献   

15.
Mössbauer studies of [{μ-S(CH2C(CH3)2CH2S}(μ-CO)FeIIFeI(PMe3)2(CO)3]PF6 (1 OX ), a model complex for the oxidized state of the [FeFe] hydrogenases, and the parent FeIFeI derivative are reported. The paramagnetic 1 OX is part of a series featuring a dimethylpropanedithiolate bridge, introducing steric hindrance with profound impact on the electronic structure of the diiron complex. Well-resolved spectra of 1 OX allow determination of the magnetic hyperfine couplings for the low-spin distal FeI ( $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I ) site, A x,y,z  = [?24 (6), ?12 (2), 20 (2)] MHz, and the detection of significant internal fields (approximately 2.3 T) at the low-spin ferrous site, confirmed by density functional theory (DFT) calculations. Mössbauer spectra of 1 OX show nonequivalent sites and no evidence of delocalization up to 200 K. Insight from the experimental hyperfine tensors of the FeI site is used in correlation with DFT to reveal the spatial distribution of metal orbitals. The Fe–Fe bond in [Fe2{μ-S(CH2C(CH3)2CH2S}(PMe3)2(CO)4] (1) involving two $ d_{{z^{2} }} $ d z 2 -type orbitals is crucial in keeping the structure intact in the presence of strain. On oxidation, the distal iron site is not restricted by the Fe–Fe bond, and thus the more stable isomer results from inversion of the square pyramid, rotating the $ d_{{z^{2} }} $ d z 2 orbital of $ {\text{Fe}}^{\text{I}} _{\text{ D}} $ Fe D I . DFT calculations imply that the Mössbauer properties can be traced to this $ d_{{z^{2} }} $ d z 2 orbital. The structure of the magnetic hyperfine coupling tensor, A, of the low-spin FeI in 1 OX is discussed in the context of the known A tensors for the oxidized states of the [FeFe] hydrogenases.  相似文献   

16.
The reaction of [VCl3(PMe2Ph)3] with HSSSSH (where the HS are thiophenolate and the S′ thioether functions, respectively), H21, yields [VCl(μ-SSSS)]2 (3) with one of the thiolate groups of each of the two ligands in the bridging mode. Reaction of Na21 with [VOCl2(thf)2] leads to a polymeric product of composition [VO(SSSS)]x (4). The products obtained from the reaction between [VOCl2(thf)2] and NaSNNSNa, Na22, (S is thiophenolate, N the amine function) depend on subtle changes in the diamine backbone of this ligand: If the amine functions are linked by -CH2CH2– (2a), the tetranuclear VIV complex [V(SNNS)μ-O]4 (5) is formed alongside the VIII complex [VCl(SNNS)]. If the backbone is -CH(Me)CH(Me)- (2b), [VO(SNNS)] (7) and the dinuclear, asymmetrically oxo-bridged VIV complex [{(SNN S)(thf)V}μ-O{V(SNN S)}] (8) are obtained. In 8, one amine of each of the two ligands is deprotonated to the amide group. In either case, the complexation is accompanied by oxidation of the thiolates to disulfides, leading to the generation of teraazatetrathio-cycloeicosanes (6a/b). Compounds 5 and 8·2THF have been structurally characterized by X-ray analyses. The connectivities have further been established for 3·2CH2Cl2 and for 6b, which exhibits the same conformation as formally characterized 6a. The cluster compound 5 is stabilized by an extended intramolecular N-H...O and N-H...S) hydrogen-bonding network. In 7·2THF, one of the THFs of crystallization is hydrogen-bonded to the NH of the penta-coordinated {VO(SNN S)} moiety; further, there is an intramolecular hydrogen bond between one of the thiolates of this tetragonal-pyramidal half of the molecule and the NH of the octahedral {VO(SNN S)thf} half. The generation of the ligand 2b from its precursor compound, the zinc complex [Zn(SNNS)] (9) leads to the structural characterization of 9·CH3OH with a large SZnS bite angle and a strong hydrogen bond between the methanolic OH and one of the thiolate sulfurs. The relevance of these compounds in biological systems is discussed.  相似文献   

17.
Density functional theory (DFT) calculations at B3LYP/6-31 G (d,p) and B3LYP/6-311?+?G(d,p) levels for the substituted pyridine-catalyzed isomerization of monomethyl maleate revealed that isomerization proceeds via four steps, with the rate-limiting step being proton transfer from the substituted pyridinium ion to the C=C double bond in INT1. In addition, it was found that the isomerization rate (maleate to fumarate) is solvent dependent. Polar solvents, such as water, tend to accelerate the isomerization rate, whereas apolar solvents, such as chloroform, act to slow down the reaction. A linear correlation was obtained between the isomerization activation energy and the dielectric constant of the solvent. Furthermore, linearity was achieved when the activation energy was plotted against the pK a value of the catalyst. Substituted-pyridine derivatives with high pK a values were able to catalyze isomerization more efficiently than those with low pK a values. The calculated relative rates for prodrugs 16 were: 1 (406.7), 2 (7.6?×?106), 3 (1.0), 4 (20.7), 5 (13.5) and 6 (2.2?×?103). This result indicates that isomerizations of prodrugs 1 and 35 are expected to be slow and that of prodrugs 2 and 6 are expected to be relatively fast. Hence, prodrugs 2 and 35 have the potential to be utilized as prodrugs for the slow release of monomethylfumarate in the treatment of psoriasis and multiple sclerosis.
Figure
Substituted pyridine-catalyzed isomerization of monomethylmaleate (prodrug, cis-isomer) to monomethylfumerate (parental drug, trans-isomer)  相似文献   

18.
In continuation of the screening of South African seaweeds to identify potential candidates for the development of pharmaceutically active functional foods, we investigated the inhibitory effects of a crude 80 % methanol extract, solvent fractions and isolated compounds from the kelp Macrocystis angustifolia against enzymes involved in type 2 diabetes and dementia. Repeated column fractionation of the ethyl acetate fraction of the crude extract of M. angustifolia afforded two phenol derivatives identified by spectroscopic analyses (1D and 2D NMR): 4-(2-hydroxyethyl)phenol (tyrosol) (1) and 4-(1,2-dihydroxyethyl)phenol (2). These compounds were isolated from a marine alga for the first time. The ethyl acetate (IC50?=?14.08?±?1.21 μg mL?1) and butanol (IC50?=?77.94?±?11.69 μg mL?1) fractions exhibited potent inhibition against α-glucosidase and acetylcholinesterase (AChE) enzymes, respectively. Tyrosol (1) and its derivative, 4-(1,2-dihydroxyethyl)phenol (2), showed potent inhibition against both α-glucosidase and AChE enzymes. Based on in silico evaluation, these two compounds are anticipated to possess sufficient oral bioavailability in accordance to the Lipinski Rule of Five without any toxicity risk. Natural α-glucosidase and AChE inhibitors from M. angustifolia offer a novel approach to control type 2 diabetes and dementia.  相似文献   

19.
Density functional theory (DFT) with relativistic corrections of zero-order regular approximation (ZORA) has been applied to explore the reaction mechanisms of ethane dehydrogenation by Zr atom with triplet and singlet spin-states. Among the complicated minimum energy reaction path, the available states involves three transition states (TS), and four stationary states (1) to (4) and one intersystem crossing with spin-flip (marked by ?): 3 Zr + C 2 H 6 3 Zr-CH 3 -CH 3 ( 3 1) → 3 TS 1/2 3 ZrH-CH 2 -CH 3 ( 3 2) → 3 TS 2/3 ? 1 ZrH2-CH2 = CH2 ( 1 3) → 1 TS 3/4 1 ZrH 3 -CH = CH 2 ( 1 4). The minimum energy crossing point is determined with the help of the DFT fractional-occupation-number (FON) approach. The spin inversion leads the reaction pathway transferring from the triplet potential energy surface (PES) to the singlet’s accompanying with the activation of the second C-H bond. The overall reaction is calculated to be exothermic by about 231 kJ mol?1. Frequency and NBO analysis are also applied to confirm with the experimental observed data.
Reaction 3 Zr + C 2 H 6 → 3 ZrH ? CH 2 ? CH 3 ? 1 ZrH 2 ? CH 2 = CH 2 → 1 ZrH 3 ? CH = CH 2 $ {}^{\mathbf{3}}\mathrm{Zr}+{\mathrm{C}}_{\mathbf{2}}{\mathrm{H}}_{\mathbf{6}}{\to}^{\mathbf{3}}\mathrm{Zr}\mathrm{H}-{\mathrm{C}\mathrm{H}}_{\mathbf{2}}-{\mathrm{C}\mathrm{H}}_{\mathbf{3}}{\Rightarrow}^{\mathbf{1}}{\mathrm{ZrH}}_2-{\mathrm{C}\mathrm{H}}_2={\mathrm{C}\mathrm{H}}_2{\to}^{\mathbf{1}}{\mathrm{ZrH}}_{\mathbf{3}}-\mathrm{CH}={\mathrm{C}\mathrm{H}}_{\mathbf{2}} $ proceeds via spin-flip surface hopping over several transition states has been investigated. The minimum energy crossing point is determined with the help of the DFT fractional-occupation-number (FON) approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号