首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether relative rates of divergence were correlated between the mitochondrial and chloroplast genomes as expected under lineage effects or were genome specific as expected with locus-specific effects. Five mitochondrial noncoding regions (nad1B_C, nad4exon1_2, nad7exon2_3, nad7exon3_4, and rps14-cob) for 21 samples from Lecythidaceae were sequenced. Three chloroplast regions (rpl20-5'rps12, trnS-trnG, and psbA-trnH) were sequenced to expand the taxa in an existing data set. Absolute rates of nucleotide and insertion and deletion (indel) changes were 13 times faster in the chloroplast genome than in the mitochondrial genome. Similar indel length frequency distributions for both organelles suggested that common mechanisms were responsible for generating indels. Molecular clock tests applied to phylogenetic trees estimated from mitochondrial and chloroplast sequences revealed global rate heterogeneity of nucleotide substitution. Maximum likelihood and Tajima's 1D relative rate tests show that Lecythis zabucajo exhibited a rate acceleration for both the mitochondrial and chloroplast sequences. Whereas Eschweilera romeu-cardosoi showed a significant rate slowdown for chloroplast sequences, the mitochondrial sequences for 3 Eschweilera taxa showed evidence for a rate slowdown only when compared with L. zabucajo. Significant rate heterogeneity was also observed for indel changes in the mitochondrial genome but not for the chloroplast. The lack of mitochondrial nucleotide changes for some taxa as well as chloroplast indel homoplasy may have limited the power of relative rate tests to detect rate variation. Relative ratio tests consistently indicated rate proportionality among branch lengths between the mitochondrial and chloroplast phylogenetic trees. The relative ratio tests showed that taxa possessing rate heterogeneity had parallel relative divergence rates in both mitochondrial and chloroplast sequences as expected under lineage effects. A neutral replication-dependent model of rate heterogeneity for both nucleotide and indel changes provides a simple explanation for common patterns of rate heterogeneity across the 2 organelle genomes in Lecythidaceae. The lineage effects observed here were uncoupled from annual/perennial habit because all the species from this study are perennial.  相似文献   

2.
Noncoding DNA sequences from numerous regions of the chloroplast genome have provided a significant source of characters for phylogenetic studies in seed plants. In lycophytes and monilophytes (leptosporangiate ferns, eusporangiate ferns, Psilotaceae, and Equisetaceae), on the other hand, relatively few noncoding chloroplast DNA regions have been explored. We screened 30 lycophyte and monilophyte species to determine the potential utility of PCR amplification primers for 18 noncoding chloroplast DNA regions that have previously been used in seed plant studies. Of these primer sets eight appear to be nearly universally capable of amplifying lycophyte and monilophyte DNAs, and an additional six are useful in at least some groups. To further explore the application of noncoding chloroplast DNA, we analyzed the relative phylogenetic utility of five cpDNA regions for resolving relationships in Botrychium s.l. (Ophioglossaceae). Previous studies have evaluated both the gene rbcL and the trnL(UAA)-trnF(GAA) intergenic spacer in this group. To these published data we added sequences of the trnS(GCU)-trnG(UUC) intergenic spacer + the trnG(UUC) intron region, the trnS(GGA)-rpS4 intergenic spacer+rpS4 gene, and the rpL16 intron. Both the trnS(GCU)-trnG(UUC) and rpL16 regions are highly variable in angiosperms and the trnS(GGA)-rpS4 region has been widely used in monilophyte phylogenetic studies. Phylogenetic resolution was equivalent across regions, but the strength of support for the phylogenies varied among regions. Of the five sampled regions the trnS(GCU)-trnG(UUC) spacer+trnG(UUC) intron region provided the strongest support for the inferred phylogeny.  相似文献   

3.
There is currently a shortage of DNA regions known to be useful for phylogenetic research in palms (Arecaceae). We report the development and use of primers for amplifying and sequencing regions of the nuclear gene malate synthase. In palms the gene appears to be single-copy, with exon regions that are phylogenetically informative within the family. We constructed a phylogeny of 45 palms and five outgroup taxa using 428 bp of malate synthase exon regions. We found that some major clades within the family were recovered, but there was a lack of resolution among the genera in subfamilies Arecoideae, Ceroxyloideae, Coryphoideae, and Phytelephantoideae. In a second analysis, malate synthase exon regions totaling 1002 bp were sequenced for 16 palms and two outgroup taxa. There was increased bootstrap support for some groups and for the placement of the monotypic genus Nypa as sister to the rest of the family. A comparison with data sets from noncoding regions of the chloroplast genome indicates that malate synthase sequences are more variable and potentially contain more phylogenetic information. We found no evidence of multiple copies of the malate synthase gene in palm genomes.  相似文献   

4.
We developed five degenerate primer pairs for the amplification and sequencing of two noncoding regions found in the mitochondrial genome of corals. These primers amplify products ranging from 380 to 950 bp, and work in a wide variety of scleractinian taxa from both the Pacific and Caribbean. Based on our initial analysis of ~300 sequences from 13 scleractinian taxa, both these noncoding regions appear to have equivalent levels of variability to the most variable of previously published coral mitochondrial loci, but work in a wider variety of taxa. We believe these primers will be of use to coral biologists studying questions above the level of species; as with other mithochondrial DNA markers in corals, these loci will likely provide little resolution for within‐species studies.  相似文献   

5.
Dong W  Liu J  Yu J  Wang L  Zhou S 《PloS one》2012,7(4):e35071

Background

At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species.

Methodology/Principal Findings

We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnSUGA-trnGUCC, petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnSUGA-trnGUCC, trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species.

Significance/Conclusions

Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding.  相似文献   

6.
Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing whole plastid genomes to find markers for evolutionary analyses is therefore particularly useful when overall genetic distances are low.  相似文献   

7.
Simple sequence repeats (SSR) and their flanking regions in the mitochondrial and chloroplast genomes were sequenced in order to reveal DNA sequence variation. This information was used to gain new insights into phylogenetic relationships among species in the genus Oryza. Seven mitochondrial and five chloroplast SSR loci equal to or longer than ten mononucleotide repeats were chosen from known rice mitochondrial and chloroplast genome sequences. A total of 50 accessions of Oryza that represented six different diploid genomes and three different allopolyploid genomes of Oryza species were analyzed. Many base substitutions and deletions/insertions were identified in the SSR loci as well as their flanking regions. Of mononucleotide SSR, G (or C) repeats were more variable than A (or T) repeats. Results obtained by chloroplast and mitochondrial SSR analyses showed similar phylogenetic relationships among species, although chloroplast SSR were more informative because of their higher sequence diversity. The CC genome is suggested to be the maternal parent for the two BBCC genome species (O. punctata and O. minuta) and the CCDD species O. latifolia, based on the high level of sequence conservation between the diploid CC genome species and these allotetraploid species. This is the first report of phylogenetic analysis among plant species, based on mitochondrial and chloroplast SSR and their flanking sequences.  相似文献   

8.
Interspecific hybridization is one of the major factors leading to phylogenetic incongruence among loci, but the knowledge is still limited about the potential of each locus to introgress between species. By directly sequencing three DNA regions: chloroplast DNAs (matK gene and trnL-F noncoding region), the nuclear ribosomal external transcribed spacer (ETS) region, and internal transcribed spacer (ITS) regions, we construct three phylogenetic trees of Asian species of Mitella (Saxifragaceae), a genus of perennials in which natural hybrids are commonly observed. Within this genus, there is a significant topological conflict between chloroplast and nuclear phylogenies and also between the ETS and the ITS, which can be attributed to frequent hybridization within the lineage. Chloroplast DNAs show the most extensive introgression pattern, ITS regions show a moderate pattern, and the ETS region shows no evidence of introgression. Nonuniform concerted evolution best explains the difference in the introgression patterns between the ETS region and ITS regions, as the sequence heterogeneity of the ITS region within an individual genome is estimated to be twice that of an ETS in this lineage. Significant gene conversion patterns between two hybridizing taxa were observed in contiguous arrays of cloned ETS-ITS sequences, further confirming that only ITS regions have introgressed bidirectionally. The relatively slow concerted evolution in the ITS regions probably allows the coexistence of multiple alleles within a genome, whereas the strong concerted evolution in the ETS region rapidly eliminates heterogeneous alleles derived from other species, resulting in species delimitations highly concordant with those based on morphology. This finding indicates that the use of multiple molecular tools has the potential to reveal detailed organismal evolution processes involving interspecific hybridization, as an individual locus varies greatly in its potential to introgress between species.  相似文献   

9.
Sequence variation in 2.2 kb of non-coding regions of the chloroplast genome of eight dandelions (Taraxacum: Lactuceae) from Asia and Europe is interpreted in the light of the phylogenetic signal of base substitutions vs. indels (insertions-deletions). The four non-coding regions displayed a total of approximately 30 structural mutations of which 9 are potentially phylogenetically informative. Insertions, deletions, and an inversion were found that involved consecutive stretches of up to 172 bases. When compared to phylogenetic relationships of the chloroplast genomes based on nucleotide substitutions only, many homoplasious indels (33%) were detected that differed considerably in length and did not comprise simple sequence repeats typically associated with replication slippage. Though many indels in the intergenic spacers were associated with direct repeats, frequently, the variable stretches participated in inverted repeat stabilized hairpins. In each intergenic spacer or intron examined, nucleotide stretches ranging from 30 to 60 bp were able to fold into stabilized secondary structures. When these indels were homoplasious, they always ranked among the most stabilized hairpins in the non-coding regions. The association of higher order structures that involve both classes of repeats and parallel structural mutations in hot spot regions of the chloroplast genome can be used to differentiate among mutations that differ in phylogenetic reliability.  相似文献   

10.
Insertions and deletions (indels) in chloroplast noncoding regions are common genetic markers to estimate population structure and gene flow, although relatively little is known about indel evolution among recently diverged lineages such as within plant families. Because indel events tend to occur nonrandomly along DNA sequences, recurrent mutations may generate homoplasy for indel haplotypes. This is a potential problem for population studies, because indel haplotypes may be shared among populations after recurrent mutation as well as gene flow. Furthermore, indel haplotypes may differ in fitness and therefore be subject to natural selection detectable as rate heterogeneity among lineages. Such selection could contribute to the spatial patterning of cpDNA haplotypes, greatly complicating the interpretation of cpDNA population structure. This study examined both nucleotide and indel cpDNA variation and divergence at six noncoding regions (psbB-psbH, atpB-rbcL, trnL-trnH, rpl20-5'rps12, trnS-trnG, and trnH-psbA) in 16 individuals from eight species in the Lecythidaceae and a Sapotaceae outgroup. We described patterns of cpDNA changes, assessed the level of indel homoplasy, and tested for rate heterogeneity among lineages and regions. Although regression analysis of branch lengths suggested some degree of indel homoplasy among the most divergent lineages, there was little evidence for indel homoplasy within the Lecythidaceae. Likelihood ratio tests applied to the entire phylogenetic tree revealed a consistent pattern rejecting a molecular clock. Tajima's 1D and 2D tests revealed two taxa with consistent rate heterogeneity, one showing relatively more and one relatively fewer changes than other taxa. In general, nucleotide changes showed more evidence of rate heterogeneity than did indel changes. The rate of evolution was highly variable among the six cpDNA regions examined, with the trnS-trnG and trnH-psbA regions showing as much as 10% and 15% divergence within the Lecythidaceae. Deviations from rate homogeneity in the two taxa were constant across cpDNA regions, consistent with lineage-specific rates of evolution rather than cpDNA region-specific natural selection. There is no evidence that indels are more likely than nucleotide changes to experience homoplasy within the Lecythidaceae. These results support a neutral interpretation of cpDNA indel and nucleotide variation in population studies within species such as Corythophora alta.  相似文献   

11.
Angiosperm systematics has progressed to the point where it is now expected that multiple, independent markers be used in phylogenetic studies. Universal primers for amplifying informative regions of the chloroplast genome are readily available, but in the faster-evolving nuclear genome it is challenging to discover priming sites that are conserved across distantly related taxa. With goals including the identification of informative markers in rosids, and perhaps other angiosperms, we screened 141 nuclear primer combinations for phylogenetic utility in two distinct groups of rosids at different taxonomic levels-Psiguria (Cucurbitaceae) and Geraniaceae. We discovered three phylogenetically informative regions in Psiguria and two in Geraniaceae, but none that were useful in both groups. Extending beyond rosids, we combined our findings with those of another recent effort testing these primer pairs in Asteraceae, Brassicaceae, and Orchidaceae. From this comparison, we identified 32 primer combinations that amplified regions in representative species of at least two of the five distantly related angiosperm families, giving some prior indication about phylogenetic usefulness of these markers in other flowering plants. This reduced set of primer pairs for amplifying low-copy nuclear markers along with a recommended experimental strategy provide a framework for identifying phylogenetically informative regions in angiosperms.  相似文献   

12.
In evolutionary biology appropriate marker selection for the reconstruction of solid phylogenetic hypotheses is fundamental. One of the most challenging tasks addresses the appropriate choice of genomic regions in studies of closely related species. Robust phylogenetic frameworks are central to studies dealing with questions ranging from evolutionary and conservation biology, biogeography to plant breeding. Phylogenetic informativeness profiles provide a quantitative measure of the phylogenetic signal in markers and therefore a method for locus prioritization. The present work profiles phylogenetic informativeness of mostly non-coding chloroplast regions in an angiosperm lineage of closely related species: the popular ornamental tribe Hydrangeeae (Hydrangeaceae, Cornales, Asterids). A recent phylogenetic study denoted a case of resolution contrast between the two strongly supported clades within tribe Hydrangeeae. We evaluate the phylogenetic signal of 13 highly variable plastid markers for estimating relationships within and among the currently recognized monophyletic groups of this tribe. A selection of combined loci based on their phylogenetic informativeness retrieved more robust phylogenetic hypotheses than simply combining individual markers performing best with respect to resolution, nodal support and accuracy or those presenting the highest number of parsimony informative characters. We propose the rpl32–ndhF intergenic spacer (IGS), trnVndhC IGS, trnLrpl32 IGS, psbTpetB region and ndhA intron as the best candidates for future phylogenetic studies in Hydrangeeae and potentially in other Asterids. We also contrasted the phylogenetic informativeness of coded indels against substitutions concluding that, despite their low phylogenetic informativeness, coded indels provide additional phylogenetic signal that is nearly free of noise. Phylogenetic relationships obtained from our total combined analyses showed improved resolution and nodal support with respect to recently published results.  相似文献   

13.
The genus Populus L. has been divided into five sections based on morphological characters, but the phylogenetic relationships among sections remain uncertain. Topological discrepancies have been reported between trees obtained using nuclear and plastid sequences. We selected nine chloroplast genomes from all five sections, including two new sequenced species in this study for analyses of maternal phylogenetic relationships in the genus Populus at the sectional level. Phylogenetic analyses were performed using various subsets of data, coding sequences, noncoding sequences, and different districts of the genome, yielding contradictory outcomes for various subsets. According to our phylogenetic analyses, (1) a robust maternal phylogenetic relationship among sections based on complete chloroplast genomes was obtained; (2) Sect. Tacamahaca can be divided into two clades based on maternally inherited loci, i.e. cladeⅠ, distributed in North America and northeast China, and cladeⅡ, distributed in southwest China; (3) SSC-noncoding regions revealed an inconsistent topology compared with all other subsets; (4) this discrepancy may be resulted from incomplete lineage sorting between species of Populus. We tested multiple partitioning schemes to resolve deep-level phylogenetic relationships in Populus, and complete noncoding subset is most recommended.  相似文献   

14.
The chloroplast genome is now known to be more variable than was once thought. Reports of RFLP (restriction fragment length polymorphism) and sequence variation, as well as variation in chloroplast microsatellites, are common. Here, data are presented on the variability of a minisatellite sequence in the chloroplast genome of Sorbus species. RFLP analysis of a PCR product comprising the region between the trnM and rbcL genes of nine Sorbus species identified seven size variants. Sequencing revealed the observed size polymorphism to be due to differences in the number of copies of an imperfect 9-bp motif. A more intensive survey of the variability of the minisatellite was undertaken in populations of Sorbus aucuparia. The potential uses of such regions in chloroplast DNA are discussed and a possible mechanism for the evolution of the minisatellite is presented.  相似文献   

15.
16.
Plastid DNA sequences have been widely used by systematists for reconstructing plant phylogenies. The utility of any DNA region for phylogenetic analysis is determined by ease of amplification and sequencing, confidence of assessment in phylogenetic character alignment, and by variability across broad taxon sampling. Often, a compromise must be made between using relatively highly conserved coding regions or highly variable introns and intergenic spacers. Analyses of a combination of these types of DNA regions yield phylogenetic structure at various levels of a tree (i.e., along the spine and at the tips of the branches). Here, we demonstrate the phylogenetic utility of a heretofore unused portion of a plastid protein-coding gene, hypothetical chloroplast open reading frame 1 (ycf1), in orchids. All portions of ycf1 examined are highly variable, yet alignable across Orchidaceae, and are phylogenetically informative at the level of species. In Orchidaceae, ycf1 is more variable than matK both in total number of parsimony informative characters and in percent variability. The nrITS region is more variable than ycf1, but is more difficult to align. Although we only demonstrate the phylogenetic utility of ycf1 in orchids, it is likely to be similarly useful among other plant taxa.  相似文献   

17.
Chloroplast DNA sequences and microsatellites are useful tools for phylogenetic as well as population genetic analyses of plants. Chloroplast microsatellites tend to be less variable than nuclear microsatellites and therefore they may not be as powerful as nuclear microsatellites for within-species population analysis. However, chloroplast microsatellites may be useful for phylogenetic analysis between closely related taxa when more conventional loci, such as ITS or chloroplast sequence data, are not variable enough to resolve phylogenetic relationships in all clades. To determine the limits of chloroplast microsatellites as tools in phylogenetic analyses, we need to understand their evolution. Thus, we examined and compared phylogenetic relationships of species within the genus Clusia, using both chloroplast sequence data and variation at seven chloroplast microsatellite loci. Neither ITS nor chloroplast sequences were variable enough to resolve relationships within some sections of the genus, yet chloroplast microsatellite loci were too variable to provide any useful phylogenetic information. Size homoplasy was apparent, caused by base substitutions within the microsatellite, base substitutions in the flanking regions, indels in the flanking regions, multiple microsatellites within a fragment, and forward/reverse mutations of repeat length resulting in microsatellites of identical base composition that were not identical by descent.  相似文献   

18.
It has been known that in noncoding regions of the chloroplast genome, the pattern of nucleotide substitution is influenced by the two nucleotides flanking the substitution site. In a GC-rich environment, a bias toward transition was observed, whereas in an AT-rich environment, a bias toward transversion was observed. In this study, the influence of the two adjacent neighbors on the substitution pattern was observed in the first intron of the mitochondrial nad4 gene, although the AT content of this intron is only 48%. The proportion of transversions increases from 0.32 to 0.75 as the A + T content (number of A's + T's) of the two nearest neighbors increases from 0 to 2. This trend was also observed in another mitochondrial group I intron with an AT content of 64%. In addition, a similar, though weaker, effect was observed in vertebrate pseudogenes. So this effect is present in all three types of genomes. Furthermore, in contrast to the situation in the noncoding regions of chloroplast DNA, where most nucleotide substitutions occurred in the categories with an A + T content of either 1 or 2, nucleotide substitutions in the mitochondrial first nad4 intron occurred more evenly in three categories of different A + T contents. This might be due largely to the difference in the AT content (0.48 vs. 0.72) between the mitochondrial first nad4 intron and the chloroplast DNA regions studied.  相似文献   

19.
? Here, we performed phylogenetic analyses and estimated the divergence times on mostly sympatric populations of five species within subgenus Nothofagus. We aimed to investigate whether phylogenetic relationships by nuclear internal transcribed spacer (ITS) and phylogeographic patterns by chloroplast DNA (cpDNA) mirror an ancient evolutionary history that was not erased by glacial eras. Extant species are restricted to Patagonia and share a pollen type that was formerly widespread in all southern land masses. Weak reproductive barriers exist among them. ? Fifteen cpDNA haplotypes resulted from the analysis of three noncoding regions on 330 individuals with a total alignment of 1794 bp. Nuclear ITS data consisted of 822 bp. We found a deep cpDNA divergence dated 32 Ma at mid-latitudes of Patagonia that predates the phylogenetic divergence of extant taxa. Other more recent breaks by cpDNA occurred towards the north. ? Complex paleogeographic features explain the genetic discontinuities. Long-lasting paleobasins and marine ingressions have impeded transoceanic dispersal during range expansion towards lower latitudes under cooler trends since the Oligocene. ? Cycles of hybridization-introgression among extant and extinct taxa have resulted in widespread chloroplast capture events. Our data suggest that Nothofagus biogeography will be resolved only if thorough phylogeographic analyses and molecular dating methods are applied using distinct genetic markers.  相似文献   

20.
Bulbophyllum is the largest genus in Orchidaceae with a pantropical distribution. Due to highly significant diversifications, it is considered to be one of the most taxonomically and phylogenetically complex taxa. The diversification pattern and evolutionary adaptation of chloroplast genomes are poorly understood in this species-rich genus, and suitable molecular markers are necessary for species determination and phylogenetic analysis. A natural Asian section Macrocaulia was selected to estimate the interspecific divergence of chloroplast genomes in this study. Here, we sequenced the complete chloroplast genome of four Bulbophyllum species, including three species from section Macrocaulia. The four chloroplast genomes had a typical quadripartite structure with a genome size ranged from 156,182 to 158,524 bp. The chloroplast genomes included 113 unique genes encoding 79 proteins, 30 tRNAs and 4 rRNAs. Comparison of the four chloroplast genomes showed that the three species from section Macrocaulia had similar structure and gene contents, and shared a number of indels, which mainly contribute to its monophyly. In addition, interspecific divergence level was also great. Several exclusive indels and polymorphism SSR loci might be used for taxonomical identification and determining interspecific polymorphisms. A total of 20 intergenic regions and three coding genes of the most variable hotspot regions were proposed as candidate effective molecular markers for future phylogenetic relationships at different taxonomical levels and species divergence in Bulbophyllum. All of chloroplast genes in four Bulbophyllum species were under purifying selection, while 13 sites within six genes exhibited site-specific selection. A whole chloroplast genome phylogenetic analysis based on Maximum Likelihood, Bayesian and Parsimony methods all supported the monophyly of section Macrocaulia and the genus of Bulbophyllum. Our findings provide valuable molecular markers to use in accurately identifying species, clarifying taxonomy, and resolving the phylogeny and evolution of the genus Bulbophyllum. The molecular markers developed in this study will also contribute to further research of conservation of Bulbophyllum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号