首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The karyotype structure of Arachis trinitensis was studied by conventional Feulgen staining, CMA/DAPI banding and rDNA loci detection by fluorescence in situ hybridization (FISH) in order to establish its genome status and test the hypothesis that this species is a genome donor of cultivated peanut. Conventional staining revealed that the karyotype lacked the small "A chromosomes" characteristic of the A genome. In agreement with this, chromosomal banding showed that none of the chromosomes had the large centromeric bands expected for A chromosomes. FISH revealed one pair each of 5S and 45S rDNA loci, located in different medium-sized metacentric chromosomes. Collectively, these results suggest that A. trinitensis should be removed from the A genome and be considered as a B or non-A genome species. The pattern of heterochromatic bands and rDNA loci of A. trinitensis differ markedly from any of the complements of A. hypogaea, suggesting that the former species is unlikely to be one of the wild diploid progenitors of the latter.  相似文献   

2.

Background  

Lack of sufficient molecular markers hinders current genetic research in peanuts (Arachis hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic research. With the development of peanut EST projects, a vast amount of available EST sequence data has been generated. These data offered an opportunity to identify SSR in ESTs by data mining.  相似文献   

3.
Nuclear restriction fragment length polymorphism (RFLP) analysis was used to determine the wild diploid Arachis species that hybridized to form tetraploid domesticated peanut. Results using 20 previously mapped cDNA clones strongly indicated A. duranensis as the progenitor of the A genome of domesticated peanut and A. ipaensis as the B genome parent. A large amount of RFLP variability was found among the various accessions of A. duranensis, and accessions most similar to the A genome of cultivated peanut were identified. Chloroplast DNA RFLP analysis determined that A. duranensis was the female parent of the original hybridization event. Domesticated peanut is known to have one genome with a distinctly smaller pair of chromosomes (“A”), and one genome that lacks this pair. Cytogenetic analysis demonstrated that A. duranensis has a pair of “A” chromosomes, and A. ipaensis does not. The cytogenetic evidence is thus consistent with the RFLP evidence concerning the identity of the progenitors. RFLP and cytogenetic evidence indicate a single origin for domesticated peanut in Northern Argentina or Southern Bolivia, followed by diversification under the influence of cultivation.  相似文献   

4.
5.
The substituted pterocarpenes named aracarpene-1 (1) and aracarpene-2 (2) were isolated from wounded peanut seeds challenged by a strain of Aspergillus caelatus. The structures of these putative phytoalexins were determined by interpretation of NMR and MS data. The aracarpenes were investigated for their antifungal and antibacterial activities as well as antioxidant, anti-inflammatory, and cytotoxic activities in mammalian cells. Aracarpene-2 demonstrated high antibacterial properties against tested gram-positive and gram-negative bacteria, whereas aracarpene-1 displayed low antibacterial properties against the same bacteria. Both compounds had no antifungal activity against Aspergillus flavus. Together with peanut stilbenoids that are also produced in the challenged seeds, these compounds may represent a class of low-molecular weight peanut metabolites with a defensive role(s) against pathogenic microorganisms.  相似文献   

6.
7.
8.
GSH appears to be essential for proper development of the root nodules during the symbiotic association of legume-rhizobia in which the entry of rhizobia involves the formation of infection threads. In the particular case of peanut-rhizobia symbiosis, the entry of rhizobia occurs by the mechanism of infection called 'crack entry', i.e. entry at the point of emergence of lateral roots. We have previously shown the role of GSH content of Bradyrhizobium sp. SEMIA 6144 during the symbiotic association with peanut using a GSH-deficient mutant obtained by disruption of the gshA gene, encoding gamma-glutamylcysteine synthetase (gamma-GCS), which was able to induce nodules in peanut roots without alterations in the symbiotic phenotype. To investigate the role of the peanut GSH content in the symbiosis, the compound L-buthionine-sulfoximine (BSO), a specific inhibitor of gamma-GCS in plants, was used. There were no differences in the plant growth and the typical anatomic structure of the peanut roots when the plants grew in the Fahraeus medium either in presence or in absence of 0.1 mM BSO. However, the GSH content was reduced by 51% after treatment with BSO. The BSO-treated plants inoculated with wild-type or mutant strains of Bradyrhizobium sp. showed a significant reduction in the number and dry weight of nodules, suggesting that GSH content could play an important role in the nodulation process of root peanut with Bradyrhizobium sp.  相似文献   

9.
The specificity of purified, peanut agglutinin has been studied immunochemically by quantitative precipitin and inhibition assays. The lectin showed substantial differences in precipitating with blood-group substances of the same specificity. Of the B substances tested, horse 4 25% completely precipitated the lectin, Beach phenol insoluble failed to interact, and PM phenol insoluble gave an intermediate reaction. The lectin did not precipitate with A1 substances, with hog gastric mucin A + H substance, or with A2 substance WG phenol insoluble. Another A2 substance, cyst 14 phenol insoluble, precipitated approximately 2/3 of the lectin. Of the H substances, Tighe phenol insoluble was inactive, JS phenol insoluble precipitated poorly, and morgan standard H precipitated about 80% of the lectin. However, first stage of Smith degradation, as well as Pl fractions obtained by mild acid hydrolysis of blood-group substances, gave products which precipitated strongly. The lectin was also completely precipitated by all precursor blood-group substances, as well as by cows 21 and 26, all having strong I-Ma, I-Ort, I-Step, and I-Da activities. Cow 18, which does not possess significant blood-group I activity, precipitated very slightly. Fractions of blood-group substances N-1 (Lea) and Tij (B) obtained by precipitation from 90 percent phenol at higher concentrations of ethanol interacted better with peanut agglutinin. These differences in activity are ascribable to a heterogeneity resulting from incomplete biosynthesis of carbohydrate side-chains of blood-group substances, particularly resulting in variations in the numbers of DGalbeta1 leads to 3DGalNAc or DGalbeta1 leads to 4DGlcNAc determinants. The agglutinin reacted with the hydatid cyst P1 glycoprotein, as well as with the previously studied antifreeze and sialic acid-free alpha1 acid glycoproteins, but not with pneumococcus type XIV polysaccharide. Inhibition of precipitation showed the lectin to be most specific for the disaccharide DGalbeta1 leads to 3DGalNAc, which is 14, 55, and 90 times as active as DGalbeta1 leads to 4DGlcNAc, DGal, and DGalbeta1 leads to 3DGlcNAc, respectively. DGalbeta1 leads to 3N-acetyl-D-galactosaminitol has approximately 1/25th the activity of DGalbeta1 leads to 3DGalNAc. Substitutions of DGlcNAc or LFuc on the DGal of active inhibitors completely blocked the activity, in line with the assumption that the combining site of the peanut lectin is a partial cavity. The oligosaccharides DGalbeta1 leads to 4DGlcNAcbeta1 leads to 6-hexane-1,2,4,5,6-pentol(s) and DGalbeta1 leads to 3[DGalbeta1 leads to 4DGlcNAcbeta1 leads to 6]N-acetyl-D-galactosaminitol showed the same inhibitory activity as DGalbeta1 leads to 4DGlcNAc, suggesting that the combining site of the peanut agglutinin may not be complementary to more than a disaccharide...  相似文献   

10.
Guo BZ  Xu G  Cao YG  Holbrook CC  Lynch RE 《Planta》2006,223(3):512-520
Preharvest aflatoxin contamination has been identified by the peanut industry as a serious issue in food safety and human health because of the carcinogenic toxicity. Drought stress is the most important environmental factor exacerbating Aspergillus infection and aflatoxin contamination in peanut. The development of drought-tolerant peanut cultivars could reduce aflatoxin contamination and would represent a major advance in the peanut industry. In this study, we identified a novel PLD gene in peanut (Arachis hypogaea), encoding a putative phospholipase D (PLD, EC 3.1.4.4). The completed cDNA sequence was obtained by using the consensus-degenerated hybrid oligonucleotide primer strategy. The deduced amino acid sequence shows high identity with known PLDs, and has similar conserved domains. The PLD gene expression under drought stress has been studied using four peanut lines: Tifton 8 and A13 (both drought tolerant) and Georgia Green (moderate) and PI 196754 (drought sensitive). Northern analysis showed that PLD gene expression was induced faster by drought stress in the drought-sensitive lines than the drought tolerance lines. Southern analysis showed that cultivated peanut has multiple copies (3 to 5 copies) of the PLD gene. These results suggest that peanut PLD may be involved in drought sensitivity and tolerance responses. Peanut PLD gene expression may be useful as a tool in germplasm screening for drought tolerance. The nucleotide sequence, reported in this paper, have been submitted to GenBank under accession number AY274834.  相似文献   

11.
The gynophore of the peanut plant (Arachis hypogaea) is a specialized organ that carries and buries the fertilized ovules into the soil in order for seed and fruit development to occur underground. The rates of growth of vertically and horizontally oriented gynophores were measured using a time-lapse video imaging system. We found that the region of maximum extension growth due to elongation (termed the Central Elongation Zone) is located on average at 2-5 mm from the tip. In the first 0-4 h after horizontal reorientation (gravistimulation), new zones of growth emerge on the upper surface, while the elongation zone of the lower side decreases in size and magnitude. Four to six hours after reorientation the zones of maximum growth are almost equal in size and location on the upper and lower sides. The growth rate and the gravitropic response decreased dramatically, upon the excision of the ovule region (terminal 1.5 mm), but a gravitropic growth response could be restored by applying the auxin indole-3-acetic acid exogenously to the excised tip. The addition of napthylphthalamic acid (an auxin transport inhibitor) at the ovule region allowed some growth to occur, but the gynophores do not respond normally to gravity, upon horizontal reorientation. We discuss the role of auxin in the gravitropic response of the gynophore.  相似文献   

12.
Laminin was purified to homogeneity from the extracellular matrix and soluble fraction of teratocarcinoma OTT6050 and also partially purified from the ascitic fluid of the mice carrying the teratocarcinoma. These laminin preparations were found to agglutinate trypsinized, glutaraldehyde-fixed rabbit erythrocytes. The hemagglutinating activity was inhibited by porcine gastric mucin, which invertase and mannan were not inhibitory. Heparin and heparan sulfate also inhibited the hemagglutination. Simple saccharides such as D-galactose, N-acetyl D-glucosamine, and N-acetyl D-galactosamine were not inhibitory, but D-glucosamine and D-galactosamine were. The hemagglutinating activity required Ca2+ and was dependent upon temperature. These results raised the possibility that laminin functions also in cell-cell interactions such as cell-cell adhesion. In addition, we report that laminin synthesized by the teratocarcinoma did not carry the large carbohydrate chain characteristic of early embryonic cells.  相似文献   

13.
花生分子标记的研究进展   总被引:2,自引:0,他引:2  
国内外对花生的研究特别是在分子水平上的研究相对水稻、油菜等农作物比较薄弱。近些年,分子标记技术迅速发展,在花生上也得到广泛的应用。本文从花生属起源、种质资源的遗传多样性、抗性基因的标记和指纹图谱等方面,综述了国内外花生分子标记的研究进展。  相似文献   

14.
McLaughlin  M.J.  Bell  M.J.  Wright  G.C.  Cozens  G.D. 《Plant and Soil》2000,222(1-2):51-58
Cadmium has been found to accumulate in peanut (Arachis hypogaea) kernels to levels exceeding the current maximum permitted concentration in Australia of 0.1 mg kg-1. Little is known of the mechanisms of Cd uptake into kernels by cultivars of peanut, so the aims of the experiments reported here were to determine if Cd is absorbed directly through the pod wall or via the main root system, and if differences exist between cultivars in this respect. Split-pot soil and sand/nutrient solution experiments were performed with two cultivars of peanut (cv. NC7 and Streeton) known to accumulate Cd to different levels in the kernel. The growth medium was separated into pod and root zones with Cd concentrations in each zone varied. In confirmation of previous field trial results, cv. NC7 had higher concentrations of Cd in kernels, given the same Cd levels in the external medium (solution or soil). Despite total Cd uptake by cv. NC7 being similar to cv. Streeton, cv. NC7 appeared to retain more Cd in the roots and translocate less Cd to shoots. Results from both soil and sand/solution culture indicated that the dominant path of Cd uptake by peanut was via the main root system, with direct pod uptake contributing less than 5% of the total Cd in the kernel. There was little difference between cultivars in this characteristic. This indicates that unlike Ca nutrition of peanuts, agronomic techniques to manage Cd uptake will require modification of soil to the full depth of root exploration, rather than just the surface strata where pods develop. Cadmium concentrations in testa were up to an order of magnitude higher than in the kernel, indicating that blanching of kernels would be effective in reducing Cd in the marketed product. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The cultivated peanut (Arachis hypogaea, Fabaceae) is believed to have originated along the eastern slopes of the Andes in Bolivia and northern Argentina. The crop is now grown throughout tropical and warm temperate regions. Among diseases attacking peanuts, rust caused byPuccinia arachidis and late leaf spot caused byPhaeoisariopsis personata are the most important and destructive on a worldwide scale. Both pathogens, restricted in host range to Arachis, probably originated and coevolved in South America along with their hosts. In recent years there has been much emphasis on screening of peanut germplasm for resistance to these diseases. At the International Crops Research Institute for the Semi-Arid Tropics (ICRISA T), India, some 10,000 peanut germplasm accessions were screened for resistance to rust and late leaf spot during 1977–1985 and sources of resistance indentified for either or both pathogens. Of the resistant genotypes, about 87% belonged to A. hypogaea var.fastigiata and 13% to var.hypogaea; 84% originated in South America or had South American connections. A high percentage (75%) had their origin in Peru (believed to be a secondary gene center for var.hirsuta and var.fastigiata,), suggesting that resistance to rust and late leaf spot diseases might have evolved in that country.  相似文献   

16.
As a major stilbene phytoalexin, resveratrol is produced or elicited in several plant species as a part of defense systems protecting plants against diseases. Resveratrol can be present in both the trans- and cis-isomeric forms, and only the trans-form increases the life expectancy and lowers the risk of cardiovascular diseases as the most bioactive form. In addition to the usages for diet and industry, peanut plant (Arachis hypogaea) and peanuts are getting higher attention due to their containment of resveratrol in the kernels and other parts of peanut plant, such as leaves, roots, and peanut shell. Recently, natural resveratrol derived from peanuts has also become a promising nutraceutical agent, promoting human health. Resveratrol has also been detected in peanut products including peanut butters, roasted peanuts, and boiled peanuts. Although, smaller and immature peanuts contain higher levels of resveratrol than mature peanuts, resveratrol in peanuts can also be preserved by cooking or manufacturing processes. Moreover, the amount of resveratrol in peanut plants and peanuts has been found to increase by external stimuli including microbial infection, wounding, UV light irradiation, ultrasonication, yeast extract treatment and by plant stress hormones. In addition, molecular level analysis has confirmed that four resveratrol synthase (RS) genes (RS1, RS2, RS3 and RS4) which catalyze synthesis of resveratrol have been identified in peanuts, and up-regulation of the genes is positively correlated to the increased contents of resveratrol. In this review, we summarize the natural biosynthesis of resveratrol in peanuts and peanut plants, as well as the occurrence of this natural phytoalexin in various peanut products. A brief knowledge on the biosynthetic pathway of resveratrol synthesis has been described. This review also deals on highlighting the effect of various external stimuli (biotic and abiotic stresses) in order to achieve the maximum induction and/or elicitation of resveratrol in peanuts and peanut plants.  相似文献   

17.
18.
19.
Summary The structure and organization of the ribosomal DNA (rDNA) of sorghum (Sorghum bicolor) and several closely related grasses were determined by gel blot hybridization to cloned maize rDNA. Monocots of the genus Sorghum (sorghum, shattercane, Sudangrass, and Johnsongrass) and the genus Saccharum (sugarcane species) were observed to organize their rDNA as direct tandem repeats of several thousand rDNA monomer units. For the eight restriction enzymes and 14 cleavage sites examined, no variations were seen within all of the S. bicolor races and other Sorghum species investigated. Sorghum, maize, and sugarcane were observed to have very similar rDNA monomer sizes and restriction maps, befitting their close common ancestry. The restriction site variability seen between these three genera demonstrated that sorghum and sugarcane are more closely related to each other than either is to maize. Variation in rDNA monomer lengths were observed frequently within the Sorghum genus. These size variations were localized to the intergenic spacer region of the rDNA monomer. Unlike many maize inbreds, all inbred Sorghum diploids were found to contain only one rDNA monomer size in an individual plant. These results are discussed in light of the comparative timing, rates, and modes of evolutionary events in Sorghum and other grasses. Spacer size variation was found to provide a highly sensitive assay for the genetic contribution of different S. bicolor races and other Sorghum species to a Sorghum population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号