首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baka ZA 《Mycopathologia》2002,156(3):215-221
The ultrastructure of intercellular hyphae and dikaryotic haustoria of Uromyces euphorbiae, and the host response to haustorial invasion was investigated. The intercellular hyphae share common characteristics with those of other uredinial stages of rust fungi. Three types of septa were recognized inside the intercellular hypha. This study showed that the extrahaustorial membrane was possibly formed before the development of the haustorium. The periodic acid-thiocharbohydrazide-silver proteinate technique showed that the haustorial mother cell wall at the penetration site, and the haustorial wall contained more carbohydrates than other fungal structures. In addition, the neckband, present around the haustorial neck, contains different material from those of the rest of the haustorial neck wall. The close associations of host organelles, such as the nucleus, chloroplasts, mitochondria, endoplasmic reticulum and microtubules, with the haustorium, is described.  相似文献   

2.
Changes of epidermal cells in the haustorium of the parasiticCuscuta japonica during its attachment to the host plantimpatiens balsamina were studied with light and electron microscopy. In the transverse sections of dodder stems not in contact with the host, epidermal cells had rounded outlines. However, when haustorial initials developed in the cortex of the parasite stem at the contact site, the epidermal cells had more dense cytoplasm and conspicuous nuclei than before, and their outline was flat in the longitudinal section. As meristem cells developed from those initials, the epidermal cells became more elongated. When the haustorium was fully matured, the apical tips of the elongated epidermal cells at the contact site branched like toes, producing numerous projections via cell wall invaginations. This event caused spaces to form between the projections; coincidently, the surface area of the apical ends of the epidermal cells increased. The dense cytoplasm at those projections contained prominent nuclei and abundant other organelles, suggesting a active metabolism. Osmiophilic particles, releasing into the cell walls from the cytoplasm, were though to be associated with the loosening and elongating of the epidermal cell walls. Dense and homogeneous materials were secreted within the spaces between the projections. These materials could play an important role in cementing the haustorium onto the surface of the host organ.  相似文献   

3.
In parasitic angiosperms the haustorium, an organ specialized for attachment and penetration of host tissue, functions in the transport of water and nutrients from the host to the parasite. In Agalinis purpurea (L.) Raf. (Scrophulariaceae) these organs are initiated laterally along its roots, opposite a primary xylem pole. Analyses of haustoria distribution and cellular root profiles show that the portion of the root which is most sensitive to haustorial elicitor molecules is the area distal to the zone of elongation and near the root meristem. Sectioned material supports this finding and, further, indicates that the cells which are the first to respond to haustorial elicitors are located in the inner cortex. Haustoria develop rapidly in response to a host root or to isolated chemical elicitors (xenognosins) normally contained in host root exudate. By 6 hr, vacuolation and radial cellular enlargement are observed in the cortex, and a lateral swelling along the root is visible. By 12 hr, cells of the epidermis divide anticlinally to establish a group of densely cytoplasmic cells at the apex of the haustorial swelling. Accompanying these divisions is the differentiation of specialized hair cells which elongate from epidermal cells flanking the presumptive haustorial apex. Next, the internal, radially enlarged cortical cells divide periclinally. Periclinal divisions are subsequently initiated in the pericycle as early as 18 hr post-induction. Cellular division and enlargement continue so that by 24–36 hr a mature pre-contact haustorium is formed. There is a reduction in root elongation concomitant with haustorial initiation. Depending upon the number of haustoria produced, elongation typically returns to the preinduction level within 2 or 3 days.  相似文献   

4.
A light-microscopic study is reported on the initiation, establishmentand structure of the primary haustorium of Striga gesnerioideson the host, cowpea (Vigna unguiculata). The radicular apexof the germinated parasite seed dissolves its way through thehost root cortex to the stele. Thus, it is converted into aprimary haustorium. Some of the haustorial front-line cellsin contact with the host endodermis penetrate into the steleand make contact with the xylem vessels. Differentiation ofthese haustorial cells into xylem vessels occurs and extendsbackwards through the median axial region of the haustorialtract in the host cortex to connect with the conductive xylemof the radicle outside the host root. Subsequently the parasite'splumule develops into a leafy shoot. On penetrating the steleof the host, the haustorium stimulates cell division in thehost pericycle whose triggered proliferation together with expansionof the parasite haustorial tissues result in the formation ofa large, tuberous primary haustorium. At various points of thehost-parasite interface, differentiation of xylem elements occurs,presumably maximizing nutrient transfer from host to parasite.In spite of this, many proliferated host cells at the interfaceremain apparently meristematic showing densely-stained cytoplasmand prominent nuclei.  相似文献   

5.
NWOKE  F. I. O. 《Annals of botany》1982,49(5):677-684
Anatomical investigations were carried out on the structureand development of the mature secondary haustorium in Alectravogelii growing on Arachis hypogaea or Vigna unguiculata. Followingthe formation of the young secondary haustorium, both the cambiumand pericycle of the host root directly opposite the young secondaryhaustorium are stimulated to divide and form new tissues andorgans including haustorial roots. Further proliferations ofthe host root pericycle and the haustorial cortex give riseto a large, tuberous and complex mature secondary haustoriumwithin which the tissues of the host and parasite remain inintimate contact forming a perfect graft union with a wide zoneof contact. Apart from the haustorial axial xylcm strand whichnormally connects the xylem of the parasite secondary root withthat of the host, direct xylary connections are also establishedbetween the axial xylem of the haustorium and the xylem of thehaustorial roots. The entire surface of the mature secondaryhaustorium of Alectrais covered with these haustorial rootsas was previously observed in its mature primary haustorium. Alectra vogelii Benth, secondary haustorium, haustorium, haustorial roots, root parasite, hemiparasitism, Arachis hypogaea, Vigna unguiculata  相似文献   

6.
本文对梨胶锈菌性子期和锈子期菌丝吸器的形成方式、吸器及其与寄主细胞界面的超微结构进行了研究。观察结果表明:梨胶锈菌性子期和锈子期寄主胞间菌丝吸器的形成方式有两种:一种是由寄主胞间菌丝直接形成吸器;另一种是由寄主胞间菌丝先形成吸器母细胞,然后由吸器母细胞形成吸器。吸器在开始形成时只是一个乳头状的侵入楔,以后逐渐形成囊状、镰刀状、指状及其它不规则形状的吸器。多数吸器分化为颈和吸器主体两部分,在颈部及部分吸器主体外有一个由类似寄主细胞壁物质形成的领圈。吸器内部的超微结构与寄主胞间菌丝基本相同,但吸器壁比胞间菌丝或吸器母细胞的壁薄。吸器鞘的厚度随着吸器伸长膨大 而逐渐增厚。  相似文献   

7.
The endophyte, that is, the haustorial part within the tissues of the host plant Impatiens balsamina, of the parasitic angiosperm Cuscuta japonica was studied with light and electron microscopy. The endophyte consisted mainly of vacuolated parenchymatous axial cells and elongate, superficial (epidermal) cells. Then the elongate, epidermal cells separated from each other and transformed into filamentous cells, called searching hyphae. The hyphae grew independently either intercellularly or intracellularly in the host parenchyma. The apical end of the hyphal cells was characterized by conspicuous, large nuclei with enlarged nucleoli and very dense cytoplasm with abundant organelles, suggesting that the hyphal cells penetrating host tissue were metabolically very active. Numerous osmiophilic particles and chloroplasts were noted in the hyphae. The osmiophilic particles were assumed to be associated with elongation of the growing hyphe. Plasmodemata connections between the searching hyphal cells of the parasite and the host parenchyma cells were not detected. Hyphal cells that reached the host xylem differentiated into water-conducting xylic hyphae by thickening of the secondary walls. A xylem bridge connecting the parasite and the host was confirmed from serial sections. Some hyphal cells that reached the host phloem differentiated into nutrient-conducting phloic hyphae. Phloic hyphae had a thin layer of peripheral cytoplasm with typical features of sieve-tube members in autotrophic angiosperms, i.e., parallel arrays of smooth endoplasmic reticulum, mitochondria, and plastids with starch granules. Interspecific open connections via the sieve pores of the host sieve elements and plasmodesmata of the parasite phloic hyphae were very rarely observed, indicating that the symplastic translocation of assimilate to the parasite from the host occurred.  相似文献   

8.
The haustorium of Trenomyces histophthorus (Ascomycetes, Laboulbeniales) appears to be enucleate and aseptate; its bulbs, isthmuses, and tubules contain abundant mitochondria and are often vacuolate. Although host cells around some bulbs appear to be unaffected, most host cells in contact with the haustorial tubules are in various stages of degeneration. In some instances deterioration of the tissues of the mallophagan host apparently occurs in advance of the haustorial tips.  相似文献   

9.
Anatomical observations were made on the structure and developmentof the primary haustorium of Alectra vogelii. Its developmentinvolves a mutual aggressive growth of both the host and parasitetissues resulting in the formation of a very large and complextuberous organ. One of the host tissues whose growth is stimulatedby parasite infection is the pericycle whose cells divide repeatedlyand grow around and within the parasite haustorial cortex. Fromvarious points of the proliferating host pericycle, roots becomeinitiated and eventually the entire surface of the haustoriumbecomes covered with these roots. We have referred to them as‘haustorial roots’, a term which we have re-examinedand redefined. True xylary connections are established not onlybetween the parasite and the host root but also between theparasite and these ‘haustorial roots’. The uniquedevelopment of primary haustorium and ‘haustorial roots’in A. vogelii is discussed in relation to the development ofprimary haustoria in other root parasites.  相似文献   

10.
Anatomy of the endophyte of Viscum album L. (Loranthaceae). An anatomical investigation into the nature of the host-parasite interaction of V. album and several of its phanerogamic hosts using SEM and light microscopy was conducted. Three kinds of parasite cell (haustorial parenchyma cells, cells resembling transfer cells and haustorial tracheids) were identified at the host-parasite interface. The terms haustorial parenchyma and haustorial tracheid are defined. Haustorial tracheids were seen to have penetrated the walls of host vessel elements and it is suggested that V. album is able to establish on a wide range of hosts because of the anatomically plastic nature of its haustorium. The development of the haustorium depends to a large extent on the nature of the surrounding host tissues. Parasite-induced host abnormalities including hypertrophy, distorted xylem elements, vessel-wall penetration and tylosis-occluded vessels were observed. The macroanatomical features observed are discussed and interpreted by-proposing a new theory for the ontogenesis of the V. album haustorium. Cortical strands with 'chisel' and 'pencil' shaped apices were both found to be present at the same time on one plant and thus were not seasonally separated.  相似文献   

11.
During germination of the ‘seed’ of Balanophora,endosperm cells at the radicular pole grow out as tubular structuresand anchor the ‘seed’ to the host rootlet. The radiculartier of cells of the embryo elongate as primary haustorial tubesand establish contact with the host root vasculature. A secondaryhaustorium arises from a meristem adjoining the primary haustorium.The remainder of the embryo contributes to the tuber proper. Host parenchyma in the immediate vicinity of the primary haustoriumreverts to meristematic activity. Some of the derivatives matureas perforate tracheary cells. The remainder, retaining meristematicactivity, squeeze themselves between secondary haustorial cellsand together initiate a composite conducting strand, which repeatedlydichotomizes as the tuber grows. The conducting strand of Balanophora is looked upon as the equivalentof combined adventitious root system of parasite and host. Theremaining part of the tuber is equivalent to the shoot. Balanophora, tuber, morphology, host-parasite relations, parasite  相似文献   

12.
NWOKE  F. I. O. 《Annals of botany》1982,49(5):669-676
Anatomical studies were carried out on initiation of the secondaryhaustorium in Alectra vogelii, a root parasite of leguminouscrops in Nigeria. In both the normal and self-haustorium, theformation of the haustorial initial on the parasite root soonafter initial contact between the host and parasite roots isfollowed by the penetration of the host root by the haustorium.Specialized penetrating cells (intrusive cells) at the haustorialfront prise apart and loosen the host root cortical cells, whichlater become digested. Through the same processes, a few ofthese columnar intrusive cells at the haustorial front piercethe endodermis to make contact with the xylem of the host root.Thereafter, a true conductive bridge consisting of short, isodiametric,reticulate vessel elements is established between the parasiteand host roots through the secondary haustorium. No pholem tissuewas observed in the connection. There is a close similaritybetween the mode of initiation of the secondary haustorium ofAlectra vogelii and that previously described for its primaryhaustorium. Alectra vogelii Benth, haustorium, self-haustorium, root parasite, hemiparasitism, Vigna unguiculata, Arachis hypogaea  相似文献   

13.
The fine structure of the intercellular hyphae of the obligate parasite Albugo candida infecting radish does not differ markedly from that described previously for cells of Peronospora manshurica. The stalked, capitate haustoria do not contain nuclei and are packed with mitochondria and lomasomes. The fungal plasma membrane and cell wall are continuous from the intercellular hypha throughout the haustorium except that there is no evidence of fungal cell wall around a portion of the haustorial stalk proximal to the haustorial head. Within the vacuolate host mesophyll cell, the haustorium is always surrounded by host plasma membrane and with at least a thin layer of host cytoplasm. The host cell wall invaginates at the point of haustorial penetration to form a short sheath around the region of penetration, but normally there is no host cell wall around the balance of the haustorium. About 1% of the haustoria observed were necrotic, and these were invariably walled-off completely from host cytoplasm by host cell wall. An amorphous, moderately electron-dense encapsulation lies between the haustorium proper and the host plasma membrane and extends into the penetration region between the sheath and the fungal cell wall. Invaded host cells contain more ribosomal-rich ground cytoplasm than uninfected cells. Glandular-like systems of tubules and connecting vesicles are often numerous in host cytoplasm in the vicinity of haustorial heads. These tubules open into the encapsulation, their limiting unit membranes being continuous with the host plasma membrane. We suggest that these represent a secretory mechanism of the host specifically induced by the parasite.  相似文献   

14.
Observations on the origin and mature structure of the haustoriumof the Western Australian Christmas tree (Nuytsia floribunda)corroborate and extend the findings of earlier workers. We showthat the previously described sclerenchymatous ‘horn’or ‘prong’ formed within the haustorium acts asa sickle-like cutting device which transversely severs the hostroot and then becomes lodged in haustorial collar tissue directlyopposite to that where it originated. The cutting process isdeduced to be rapid and the gland-like fluid filled structurein the haustorium is suggested to generate a hydrostatic forcedriving the device through the host root. The haustorial parenchymacells at the tight junction between the endophytic part of thehaustorium and the cut face of the host root develop balloon-likeoutgrowths which intrude into the lumina of severed xylem vesselsof the host. Experiments feeding 0.05% (w/v) basic fuchsin tofreshly cut ends of host root segments distal to terminally-attachedmature haustoria demonstrate an apoplastic pathway from hostxylem elements fractured at the interface into haustorial parenchyma,and thence through vascular tissue to the haustorium into thetranspiring plant of Nuytsia. Application of labelled water(D2O) to uncut basal roots of potted plants ofAcacia acuminataparasitized by Nuytsia results in labelling of leafy shootsof parasite and host, indicative of haustorial uptake of waterby Nuytsia from host root xylem in the intact association. Measurementsof xylem water potentials of pot-cultured seedling Nuytsia associatedwith a range of hosts, or of mature trees of Nuytsia and partnerwoody hosts in the native habitat, demonstrate consistentlymore negative potentials in the parasite than host, suggestingthat the parasite may regularly obtain xylem water through itshaustorial apparatus. Copyright 2000 Annals of Botany Company Root hemiparasite, Nuytsia floribunda, Loranthaceae, haustorial structure, host–parasite water relations  相似文献   

15.
WILLIAMS  C. N. 《Annals of botany》1963,27(4):641-644
Tapinanthus bangwensis forms a single large union with the host.Initially, the haustorium penetrates the host-cortex by thepressure of growth and enzymic action. On contact with the wood,the haustorium induces meristematic activity in the xylem parenchymaand cambium which leads to the dissection of the host wood andpenetration of haustorial branches between the dissected portions.Vascular contact is made by the formation of adjacent conductingcells in the host and parasite tissues.  相似文献   

16.
In this study, we focused on compatible interactions between Peronospora parasitica isolate Emoy‐2 and wild‐type (Oy‐0) and mutant (Ws‐eds1) Arabidopsis thaliana accessions by using light and transmission electron microscopy (TEM). Light microscopy of compatible interactions revealed that conidia germinated and penetrated through the anticlinal cell walls of two epidermal cells. Rapid spreading of the hyphal growth with formation of numerous haustoria within the mesophyll cells was subsequently followed by profuse sporulation in the absence of host cell necrosis on both wild‐type and mutant accessions. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were lobed with the diameter of 6–7 μm. Each haustorium was connected to intercellular hyphae in the absence of apparent haustorial neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. Callose‐like deposits were frequently observed at sites of penetration around the proximal region of the haustorial neck. Apart from a few callose ensheatments, no obvious response was observed in host cells following formation of haustoria. Most of mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cell of both accessions suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotroph oomycete differs considerably from responses to other pathogens such as necrotrophs.  相似文献   

17.
The response of the stem of a resistant host (Impatiens baslamina) to infection by the parasitic flowering plant Cuscuta japonica was studied with light and electron microscopy. The intra- and interfascicular cambial cells in the host stem first reacted to the penetrating upper haustorium by dividing, and the differentiation of the host xylem (vascular) tissues proceeded toward interfascicular areas from vascular bundles. When the host vascular tissue was invaded by the endophyte (haustorial portion in the host stem), the host xylem was displaced, and host vessels became occluded with parenchyma cells, resulting in tyloses. As the parasitism progressed, areas of the host stem penetrated by the endophyte became swollen via secondary growth and cell division in the parenchymatous cortex, pith, and interfascicular areas. During this intrusion by the endophyte, darkly stained necrotic reactions were detected at the interface between the host tissue and the invading endophyte. The results suggested that in the host tissues penetrated by the parasite, the formation of secondary tissue and swellings caused by active cell division of ground tissue and host vessel occlusion by tyloses constitute the host structural defense against the parasite.  相似文献   

18.
Summary Structural features of haustorial interface parenchyma of the root hemiparasiteOlax phyllanthi are described. Walls contacting host xylem are thickened non-uniformly with polysaccharides, not lignin, and show only a thin protective wall layer when abutting pits in walls of host xylem vessels or tracheids. Lateral walls of interface parenchyma exhibit an expanded middle layer of open fibrillar appearance, sometimes with, but mostly lacking adjoining layers of dense wall material. Free ribosomes and rough endoplasmic reticulum are prominent and occasional wall ingrowths present. Experiments involving transpirational feeding of the apoplast tracers lanthanum nitrate or uranyl acetate to host roots cut below haustorial connections, indicate effective apoplastic transfer from host to parasite root via the haustorium. Deposits of the tracers suggest a major pathway for water flow through host xylem pits, across the thin protective wall layer, and thence into the haustorium via the electronopaque regions of the terminal and lateral walls of the contact parenchyma. Graniferous tracheary elements and walls of parenchyma cells of the body of the haustorium appear to participate in tracer flow as do walls of cortical cells, stele parenchyma and xylem conducting elements of the parasite root, suggesting that both vascular and non-vascular routes are involved in extracytoplasmic transfer of xylem sap from host to parasite. The Casparian strip of the endodermis and the suberin lamella of the exodermis of theOlax root act as barriers to flow within the system.  相似文献   

19.
Summary An examination was made of the ultrastructure of haustoria or intracellular hyphae in four fungi: an obligate parasite (Puccinia hordei), a facultative parasite (Exobasidium japonicum) and two facultative saprophytes (Phytophthora palmivora and Sclerotinia fructigena). P. hordei haustoria showed the typical ultrastructure and host-parasite interface of most of the obligate parasites already studied. Connections between the host endoplasmic reticulum and host plasmalemma were observed at the encapsulation site. Tubules connecting the haustorial cytoplasm with the encapsulation, through the haustorial wall were occasionally seen. The host cell remained alive in the presence of the parasite. E. japonicum haustoria lacked a neck and encapsulation and were irregularly shaped, with branches which appeared to be partly surrounded by a sheath. Some of these branches showed cytoplasmic connections between the parasite and the host through the sheath. All the observed haustoria of E. japonicum were anucleate and contained only a few mitochondria and sparse membranes. The host cell was dead and its organelles disorganized. P. palmivora haustoria were simple with nucleus, endoplasmic reticulum, mitochondria and Golgi bodies. Neither sheath nor encapsulation was observed, and the host cell was also dead and disorganized. S. fructigena did not produce haustoria of any kind, the intercellular hyphae became intracellular by the degradation of the host cell walls, and the host cells were killed in advance of the growing hyphae.It is suggested that a new definition of haustorium is required to include all these intermediate haustorial bodies which cannot be included within the present concept of haustorium.  相似文献   

20.
Brian A. Fineran 《Protoplasma》1995,189(3-4):216-228
Summary Korthalsella (Viscaceae) is a dwarf mistletoe attached to its host branch by a single haustorium. Plants are leafless with flattened or cylindrical stems that function in photosynthesis. When a fresh haustorium is cut the sucker within the host appears bright green. Transmission electron microscopy reveals that this greening is due to chloroplasts, but that their organization differs from those of the aerial stem. The three representatives of Korthalsella endemic to New Zealand were the main species investigated. In the stem, chloroplasts have short stacks of cylindrical grana interconnected by stroma thylakoids typical of normal chloroplasts. Sucker chloroplasts have a more variable organization, with most containing extensive granal stacks and poorly differentiated stroma thylakoids. These granal thylakoids exhibit extensive partitions formed by appression of adjacent membranes. Some sucker plastids also approach etioplasts in having a prominent prolamellar body from which radiate thylakoids with short partitions. Sucker chloroplasts usually contain a few large starch grains, plastoglobuli, and sometimes also a stroma centre. The extensive granal thylakoids in sucker chloroplasts of Korthalsella resemble that found in certain shade plants and tissue grown under low light conditions. Sucker chloroplasts probably have a low level of photosynthesis. This activity might provide a local source of osmotically active material used to assist transport between host and parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号