首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous impedance analysis studies of intact epithelia have been complicated by the presence of connective tissue or smooth muscle. We now report the first application of this method to cultured epithelial monolayers. Impedance analysis was used as a nondestructive method for deducing quantitative morphometric parameters for epithelia grown from the renal cell line A6, and its subclonal cell line 2F3. The subclonal 2F3 cell line was chosen for comparison to A6 because of its inherently higher Na+ transport rate. In agreement with previous results, 2F3 epithelia showed significantly higher amiloride-sensitive short-circuit currents (Isc) than A6 epithelia (44 +/- 2 and 27 +/- 2 microA/cm2, respectively). However, transepithelial conductances (GT) were similar for the two epithelia (0.62 +/- 0.04 mS/cm2 for 2F3 and 0.57 +/- 0.04 mS/cm2 for A6) because of reciprocal differences in cellular (Gc) and paracellular (Gj) conductances. Significantly lower Gj and higher Gc values were observed for 2F3 epithelia than A6 (Gj = 0.23 +/- 0.02 and 0.33 +/- 0.04 mS/cm2 and Gc = 0.39 +/- 0.16 and 0.26 +/- 0.10 mS/cm2, respectively). Nonetheless, the cellular driving force for Na+ transport (Ec) and the amount of transcellular Na+ current under open-circuit conditions (Ic) were similar for the two epithelia. Three different morphologically-based equivalent circuit models were derived to assess epithelial impedance properties: a distributed model which takes into account the resistance of the lateral intercellular space and two models (the "dual-layer" and "access resistance" models), which corrected for impedance of small fluid-filled projections of the basal membrane into the underlying filter support. Although the data could be fitted by the distributed model, the estimated value for the ratio of apical to basolateral membrane resistances was unreasonably large. In contrast, the other models provided statistically superior fits and reasonable estimates of the membrane resistance ratio. The dual-layer model and access resistance models also provided similar estimates of apical and basolateral membrane conductances and capacitances. In addition, both models provided new information concerning the conductance and area of the basolateral protrusions. Estimates of the apical membrane conductance were significantly higher for 2F3 (0.79 +/- 0.23 mS/cm2) than A6 epithelia (0.37 +/- 0.07 mS/cm2), but no significant difference could be detected for apical membrane capacitances (1.4 +/- 0.04 and 1.2 +/- 0.1 microF/cm2 for 2F3 and A6, respectively) or basolateral membrane conductances (3.48 +/- 1.67 and 2.95 +/- 0.40 mS/cm2). The similar basolateral membrane properties for the two epithelia may be explained by their comparable transcellular Na+ currents under open-circuit conditions.  相似文献   

2.
The isolated pigment epithelium and choroid of frog was mounted in a chamber so that the apical surfaces of the epithelial cells and the choroid were exposed to separate solutions. The apical membrane of these cells was penetrated with microelectrodes and the mean apical membrane potential was --88 mV. The basal membrane potential was depolarized by the amount of the transepithelial potential (8--20 mV). Changes in apical and basal cell membrane voltage were produced by changing ion concentrations on one or both sides of the tissue. Although these voltage changes were altered by shunting and changes in membrane resistance, it was possible to estimate apical and basal cell membrane and shunt resistance, and the relative ionic conductance Ti of each membrane. For the apical membrane: TK approximately equal to 0.52, THCO3 approximately equal to 0.39 and TNa approximately equal to 0.05, and its specific resistance was estimated to be 6000--7000 omega cm2. For the basal membrane: TK approximately equal to 0.90 and its specific resistance was estimated to be 400--1200 omega cm2. From the basal potassium voltage responses the intracellular potassium concentration was estimated at 110 mM. The shunt resistance consisted of two pathways: a paracellular one, due to the junctional complexes and another, around the edge of the tissue, due to the imperfect nature of the mechanical seal. In well-sealed tissues, the specific resistance of the shunt was about ten times the apical plus basal membrane specific resistances. This epithelium, therefore, should be considered "tight". The shunt pathway did not distinguish between anions (HCO--3, Cl--, methylsulfate, isethionate) but did distinguish between Na+ and K+.  相似文献   

3.
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++-sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.  相似文献   

4.
Procedures for the preparation and culture of branchial epithelia from dispersed gill cells of freshwater tilapia (Oreochromis niloticus) are described. Epithelia were cultured on permeable supports (terephthalate membranes, "filters") and bathed on both the apical and basolateral side with isotonic media containing 6% fetal bovine serum (FBS). When the apical medium was replaced with freshwater (pseudo in vivo asymmetrical culture conditions), transepithelial resistance (TER) increased markedly, transepithelial potential became negative, and paracellular permeability decreased. The physiological effects of cortisol and 10% homologous (tilapia) serum were investigated. Tilapia serum (TS) was prepared from unstressed and stressed fish and therefore allowed comparison between the effects of homologous serum derived from fish in differing physiological states. Under both symmetrical and asymmetrical culture conditions, cortisol significantly elevated TER across cultured tilapia gill epithelia, indicative of a significant increase in epithelial "tightness." Cortisol reduced transepithelial Na + and Cl? movement and paracellular permeability. The glucocorticoid agonist dexamethasone elicited a similar response, which was inhibited by the glucocorticoid antagonist (receptor blocker) RU486. Cortisol did not stimulate active ion transport across epithelia under either symmetrical or asymmetrical culture conditions. In epithelia supplemented with TS from stressed fish, physiological changes in cultured preparations were consistent with those observed in FBS + cortisol-supplemented epithelia. Differences between the physiological status of epithelia supplemented with TS from unstressed and stressed fish could be abolished with RU486. Using TS as a medium supplement did not stimulate active ion transport under asymmetrical culture conditions, although Na +-K +-ATPase activity increased in TS-supplemented epithelia relative to FBS-supplemented preparations.  相似文献   

5.
Branchial epithelia of freshwater rainbow trout were cultured on permeable supports, polyethylene terephthalate membranes ("filter inserts"), starting from dispersed gill epithelial cells in primary culture. Leibowitz L-15 media plus foetal bovine serum and glutamine, with an ionic composition similar to trout extracellular fluid, was used. After 6 days of growth on the filter insert with L-15 present on both apical and basolateral surfaces, the cultured preparations exhibited stable transepithelial resistances (generally 1000-5000 ohms cm2) typical of an electrically tight epithelium. Under these symmetrical conditions, transepithelial potential was zero, and unidirectional fluxes of Na+ and Cl- across the epithelium and permeability to the paracellular marker polyethylene glycol-4000 (PEG) were equal in both directions. Na+ and Cl- fluxes were similar to one another and linearly related to conductance (inversely related to resistance) in a manner indicative of fully conductive passive transport. Upon exposure to apical fresh water, transepithelial resistance increased greatly and a basolateral-negative transepithelial potential developed. At the same time, however, PEG permeability and unidirectional effluxes of Na+ and Cl- increased. Thus, total conductance fell, and ionic fluxes and paracellular permeability per unit conductance all increased greatly, consistent with a scenario whereby transcellular conductance decreases but paracellular permeability increases upon dilution of the apical medium. In apical fresh water, there was a net loss of ions from the basolateral to apical surfaces as effluxes greatly exceeded influxes. However, application of the Ussing flux ratio criterion, in two separate series involving different methods for measuring unidirectional fluxes, revealed active influx of Cl- against the electrochemical gradient but passive movement of Na+. The finding is surprising because the cultured epithelium appears to consist entirely of pavement-type cells.  相似文献   

6.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

7.
Aldosterone-induced increases in apical membrane epithelial sodium channel (ENaC) density and Na transport involve the induction of 14-3-3 protein expression and their association with Nedd4-2, a substrate of serum- and glucocorticoid-induced kinase (SGK1)-mediated phosphorylation. A search for other 14-3-3 binding proteins in aldosterone-treated cortical collecting duct (CCD) cells identified the Rab-GAP, AS160, an Akt/PKB substrate whose phosphorylation contributes to the recruitment of GLUT4 transporters to adipocyte plasma membranes in response to insulin. In CCD epithelia, aldosterone (10 nM, 24 h) increased AS160 protein expression threefold, with a time-course similar to increases in SGK1 expression. In the absence of aldosterone, AS160 overexpression increased total ENaC expression 2.5-fold but did not increase apical membrane ENaC or amiloride-sensitive Na current (Isc). In AS160 overexpressing epithelia, however, aldosterone increased apical ENaC and Isc 2.5-fold relative to aldosterone alone, thus recruiting the accumulated ENaC to the apical membrane. Conversely, AS160 knockdown increased apical membrane ENaC and Isc under basal conditions to ∼80% of aldosterone-stimulated values, attenuating further steroid effects. Aldosterone induced AS160 phosphorylation at five sites, predominantly at the SGK1 sites T568 and S751, and evoked AS160 binding to the steroid-induced 14-3-3 isoforms, β and ε. AS160 mutations at SGK1 phospho-sites blocked its selective interaction with 14-3-3β and ε and suppressed the ability of expressed AS160 to augment aldosterone action. These findings indicate that the Rab protein regulator, AS160, stabilizes ENaC in a regulated intracellular compartment under basal conditions, and that aldosterone/SGK1-dependent AS160 phosphorylation permits ENaC forward trafficking to the apical membrane to augment Na absorption.  相似文献   

8.
The immortalized rat submandibular epithelial cell line, SMG-C6, cultured on porous tissue culture supports, forms polarized, tight-junction epithelia facilitating bioelectric characterization in Ussing chambers. The SMG-C6 epithelia generated transepithelial resistances of 956+/-84Omega.cm2 and potential differences (PD) of -16.9 +/- 1.5mV (apical surface negative) with a basal short-circuit current (Isc) of 23.9 +/- 1.7 microA/cm2 (n = 69). P2 nucleotide receptor agonists, ATP or UTP, applied apically or basolaterally induced a transient increase in Isc, followed by a sustained decreased below baseline value. The peak DeltaIsc increase was partly sensitive to Cl- and K+ channel inhibitors, DPC, glibenclamide, and tetraethylammonium (TEA) and was completely abolished following Ca2+ chelation with BAPTA or bilateral substitution of gluconate for Cl-. The major component of basal Isc was sensitive to apical Na+ replacement or amiloride (half-maximal inhibitory concentration 392 nM). Following pretreatment with amiloride, ATP induced a significantly greater Isc; however, the poststimulatory decline was abolished, suggesting an ATP-induced inhibition of amiloride-sensitive Na+ transport. Consistent with the ion transport properties found in Ussing chambers, SMG-C6 cells express the rat epithelial Na+ channel alpha-subunit (alpha-rENaC). Thus, cultured SMG-C6 cells produce tight polarized epithelia on permeable support with stimulated Cl- secretory conductance and an inward Isc accounted for by amiloride-sensitive Na+ absorption.  相似文献   

9.
In opossum kidney (OK) cells as well as in kidney proximal tubules, P(i) depletion increases apical (A) and basolateral (B) Na(+)-dependent P(i) cell influxes. In OK cells' monolayers in contrast to proximal tubules, there is no increase in transepithelial P(i) transport. This limitation may be due to altered cell-matrix interactions. A and B cell (32)P(i) uptakes and transepithelial (32)P(i) and [(14)C]mannitol fluxes were measured in OK cells grown on uncoated or on Matrigel-coated filter inserts. Cells were exposed overnight to solution of either low (0.25 mM) or high (2.5 mM) P(i). When grown on Matrigel, immunofluorescence of apical NaPi4 (an isoform of the sodium-phosphate cotransporter) transporters increased and A and B (32)P(i) uptakes into P(i) depleted cells were five and threefold higher than in P(i) replete cells (P < 0.001). P(i) deprivation resulted in larger increase in A to B (4.6x, P < 0.001) than in B to A (3.5x, P < 0.001) P(i) flux and net P(i) transport from A to B increased 10-fold (P < 0.001). With P(i) depletion increases in B to A (3.4x) and A to B (3.3x) paracellular [(14)C]mannitol fluxes were similar, and its net flux was opposite to that of P(i). In cells grown on uncoated filters, transepithelial and paracellular unidirectional and net P(i) fluxes decreased or did not change with P(i) depletion, despite twofold increases in apical and basolateral P(i) cell influxes. In summary, Matrigel-OK cell interactions, particularly in P(i)-depleted cells, led to enhanced expression of apical NaPi4 transporters resulting in higher P(i) transport rates across cell boundaries; apical P(i) readily entered the transcellular transport pool and paracellular fluxes were smaller fractions of transepithelial P(i) fluxes. These Matrigel-induced changes led to an increase in net transepithelial apical to basolateral P(i) transport.  相似文献   

10.
Theoretical analysis of transepithelial active Na transport is often based on equivalent electrical circuits comprising discrete parallel active and passive pathways. Recent findings show, however, that Na+ pumps are distributed over the entire basal lateral surface of epithelial cells. This suggests that Na+ that has been actively transported into paracellular channels may to some extent return to the apical (mucosal) bathing solution, depending on the relative conductances of the pathways via the tight junctions and the lateral intercellular spaces. Such circulation, as well as the relative conductance of cellular and paracellular pathways, may have an important influence on the relationships between parameters of transcellular and transepithelial active transport and metabolism. These relationships were examined by equivalent circuit analysis of active Na transport, Na conductance, the electromotive force of Na transport, the "stoichiometry" of transport, and the degree of coupling of transport to metabolism. Although the model is too crude to permit precise quantification, important qualitative differences are predicted between "loose" and "tight" epithelia in the absence and presence of circulation. In contrast, there is no effect on the free energy of metabolic reaction estimated from a linear thermodynamic formalism. Also of interest are implications concerning the experimental evaluation of passive paracellular conductance following abolition of active transport, and the use of the cellular voltage-divider ratio to estimate the relative conductances of apical and basal lateral plasma membranes.  相似文献   

11.
In this communication we show that Gd3+ acts as an activator of the apical sodium channel (ENaC) in frog skin epithelia. Application of Gd3+ to the apical solution of frog skin epithelia increased the Na+ absorption measured as the amiloride-inhibitable short-circuit current (Isc). The stimulation was dose dependent with a concentration for half-maximal stimulation (EC50) of 0.023 mM. The change in Isc was found to correlate with the net Na+ flux, confirming that Gd3+ enhances Na+ absorption. By monitoring the cellular potential (Vsc) with microelectrodes during addition of Gd3+, it was found that Vsc depolarized as Isc rose, indicating that Gd3+ affects apical Na+ permeability (PNa). This was confirmed by measuring the I/V relations of the apical membrane. In the presence of benzimidazolylguanidin (BIG), a drug known to abolish the Na+ self-inhibition, Gd3+ had no effect on Isc. The Na+ self-inhibition was investigated using fast changes of the apical Na+ concentration on K+-depolarized epithelia. BIG was found to abolish the Na+ self-inhibition and to activate the basal Na+ transport, whereas Gd3+ only activated the basal Na+ transport but had no effect on the self-inhibition. These results indicate the existence of an alternative nonhormonal mechanism to Na+ self-inhibition, via which both Gd3+ and BIG act, possibly components of the Na+ feedback inhibition system.  相似文献   

12.
The isolated intestinal mucosa of the flounder, Pseudopleuronectes americanus, when bathed in a 20 mM HCO3-Ringer's solution bubbled with 1% CO2 in O2, generated a serosa-negative PD and, when short-circuited, absorbed Cl at almost 3 times the rate of Na. Reducing HCO3 to 5 mM decreased the net Cl flux by more than 60%. The following results suggest that, despite the PD, Na and Cl transport processes are nonelectrically coupled: replacing all Na with choline abolished both the PD and net Cl flux; replacing all Cl with SO4 and mannitol abolished the PD and the net Na flux; and adding ouabain (to 0.5 mM) abolished the PD and the net Cl flux. Nearly all of the unidirectional serosa-to-mucosa Cl flux (JClsm) seemed to be paracellular since it varied with PD and Cl concentration in a manner consistent with simple diffusion. JClsm was only about one-fourth of JNasm, suggesting that the paracellular pathway is highly cation-selective. The data can be explained by the following model: (i) Na and Cl uptake across the brush border are coupled 1 : 1; Na is pumped into the lateral space and Cl follows passively, elevating the salt concentration there; (ii) the tight junction is permeable to Na but relatively impermeable to Cl; and (iii) resistance to Na diffusion is greater in the lateral space (considered in its entirety) than in the tight junction. If these assumptions are correct, the serosa-negative transmural PD is due mainly to a salt diffusion potential across the tight junction and, under short-circuit condition, most of the Na pumped into the lateral space diffuses back into the luminal solution, whereas most of the Cl enters the serosal solution. Morphological features of the epithelium support this interpretation: the cells are unusually long (60 micrometer); there is little distension of the apical 12 micrometer of the lateral space during active fluid absorption; and distension distal to this region is intermittently constricted by desmosomes.  相似文献   

13.
Transepithelial fluxes of mannitol, Na+ and Cl- were measured under open circuit conditions in cultured epithelia derived from toad kidney (A6). Both aldosterone and aldosterone plus insulin produced significant increases in the apparent permeability to mannitol (40 and 83%, respectively). Na+ permeabilities calculated from basolateral to apical Na+ fluxes showed approximately the same percentage increases in response to aldosterone and aldosterone plus insulin. Cl- permeabilities calculated from basolateral to apical Cl- fluxes did not show the same percentage increases. The flux ratios for Cl- were significantly lower than would be predicted for simple electrochemical diffusion in both control and hormone-treated epithelia. In aldosterone-treated epithelia, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) caused Cl- flux ratios to approach predicted values. The unidirectional Cl- fluxes may have significant contributions from both the transcellular and paracellular pathways, with the direction of departure from predicted values being consistent with the presence of Cl- exchange diffusion. In aldosterone plus insulin-treated epithelia, amiloride significantly reduced both the mannitol and Na+ permeabilities. These findings are consistent with aldosterone- and aldosterone plus insulin-induced increases in paracellular pathway permeability which may be secondary to the change in active Na+ transport rather than a primary effect.  相似文献   

14.
Channels in epithelial cell membranes and junctions.   总被引:3,自引:0,他引:3  
Epithelia may be classified as "tight" or "leaky," depending on whether there is a significant pathway for transepithelial ion permeation via the junctions and bypassing the cells. The resistance of this paracellular channel may depend partly on structures visible in the electron microscope, partly on wall charge. Permeability determinations in the leaky junctions of gallbladder epithelium, using many different organic cations, suggest that the critical barriers barriers to ion permeation are 5--8 A in radius and bind cations by up to four strongly proton-accepting oxygens. The apical cell membrane of tight epithelia contains a Na+-selective channel that is blocked by amiloride and Ca2+, subject to negative feedback control by the Na+ pump in the basolateral membrane, and somehow promoted by aldosterone. To determine the permeabilities of these two channels (the junctional channel of leaky epithelia, and the Na+ channel of tight epithelia) to water and nonelectrolytes remains a major unsolved problem.  相似文献   

15.
Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.  相似文献   

16.
Besides being a Ca2-regulating hormone, parathyroid hormone (PTH) has also been shown to regulate epithelial transport of certain ions, such as Cl, HCO?, and Na, particularly in the kidney. Although the intestinal epithelium also expressed PTH receptors, little was known regarding its mechanism in the regulation of intestinal ion transport. We investigated the ion regulatory role of PTH in intestinal epithelium-like Caco-2 monolayer by Ussing chamber technique and alternating current impedance spectroscopy. It was found that Caco-2 cells rapidly responded to PTH within 1 min by increasing apical HCO?- secretion. CFTR served as the principal route for PTH-stimulated apical HCOV efflux, which was abolished by various CFTR inhibitors, namely, NPPB, glycine hydrazide-101 (GlyH-101), and CFTRinh-172, as well as by small interfering RNA against CFTR. Concurrently, the plasma membrane resistance was decreased with no changes in the plasma membrane capacitance or paracellular permeability. HCOV was probably supplied by basolateral uptake via the electrogenic Na?-HCO?? cotransporter and by methazolamide-sensitive carbonic anhydrase, while the resulting intracellular H? might be extruded by both apical and basolateral Na/H exchangers. Furthermore, the PTH-stimulated HCO?-secretion was markedly reduced by protein kinase A (PKA) inhibitor (PKI 14-22 amide) and phosphoinositide 3-kinase (PI3K) inhibitors (wortmannin and LY-294002), but not by intracellular Ca2? chelator (BAPTA-AM) or protein kinase C inhibitor (GF-109203X). In conclusion, the present study provided evidence that PTH directly and rapidly stimulated apical HCO?- secretion through CFTR in PKA- and PI3K-dependent manner, which was a novel noncalciotropic, ion regulatory action of PTH in the intestinal epithelium.  相似文献   

17.
In multicellular organisms, epithelia separate and divide the internal environment maintaining appropriate conditions in each compartment. To maintain homeostasis in these compartments, claudins, major cell adhesion molecules in tight junctions (TJs), regulate movements of several substances through the paracellular pathway (barrier function). In this study, we investigated effects of the flux of several substances between apical and basolateral side on paracellular transport and TJ protein localization. NaCl flux from apical to basolateral side increased paracellular conductance (Gp) and recruited claudin-1 from lateral cell membrane to the apical end with the colocalization with occludin, one of the TJ proteins concentrated at TJ strands. Oppositely-directed flux of sucrose against NaCl flux inhibited these reactions and same directional flux of sucrose with NaCl enhanced the increase of Gp, whereas 10-kDa dextran inhibited these reactions regardless of the side of administration. Our present findings indicated that TJ protein localization and barrier function are regulated depending on the environmental differences between apical and basolateral side.  相似文献   

18.
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the alpha and beta subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron-glial interactions in the mammalian nervous system.  相似文献   

19.
Cortisol had dose-dependent effects on the electrophysiological, permeability, and ion-transporting properties of cultured pavement cell epithelia derived from freshwater rainbow trout gills and grown on cell culture filter supports. Under both symmetrical (L15 media apical/L15 media basolateral) and asymmetrical (freshwater apical/L15 media basolateral) culture conditions, cortisol treatment elevated transepithelial resistance, whereas permeability of epithelia to a paracellular permeability marker (polyethylene glycol-4000) decreased. Cortisol did not alter the Na(+)-K(+)-ATPase activity or the total protein content of the cultured preparations. During 24-h exposure to asymmetrical conditions, the net loss rates of both Na(+) and Cl(-) to the water decreased with increasing cortisol dose, an important adaptation to dilute media. Unidirectional Na(+) and Cl(-) flux measurements and the application of the Ussing flux-ratio criterion revealed cortisol-induced active uptake of both Na(+) and Cl(-) under symmetrical culture conditions together with an increase in transepithelial potential (positive on the basolateral side). Under asymmetrical conditions, cortisol did not promote active ion transport across the epithelium. These experiments provide evidence for the direct action of cortisol on cultured pavement cell epithelia and, in particular, emphasize the importance of cortisol for limiting epithelial permeability.  相似文献   

20.
Isolated epithelia of frog skin were prepared with collagenase, and the cells were punctured with intracellular microelectrodes across their apical (outer) and basolateral (inner) surfaces. Regardless of the route of cell puncture, the intracellular voltage (Vosc) in short- circuited isolated epithelia was markedly negative, averaging -70.4 mV for apical punctures and -91.6 mV for basolateral punctures. As in intact epithelia, amiloride outside caused the Vosc to become more negative (means of -96.7 and -101.8 mV), with a concomitant increase in the resistance of the apical barrier. Increasing the [K)i of the basolateral solution from 2.4 to 8.0 or 14.4 mM caused rapid step depolarization (5-10 s) of the Vosc under transepithelial Na transporting and amiloride-inhibited conditions of Na transport, with the delta Vosc ranging between 23.9 and 68.3 mV per decade change of [K]i. The finding that the Vosc of isolated epithelia of frog skin is independent of the route of cell penetration is consistent with the notion that the cells of the stratified epithelium are electrically coupled (functional syncitium). Moreover, the isolated epithelium can serve as a useful preparation, especially in studies designed to investigate the properties of the basolateral surfaces of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号