首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The plastid matK gene, trnL/F spacer, and nuclear rDNA ITS were sequenced for 36 species of Leontodon and 29 taxa of related genera of tribe Lactuceae. Phylogenetic relationships inferred from the independent and combined data are largely congruent and reveal that Leontodon sensu lato (s.l.) as presently defined is diphyletic: L. subgenus Leontodon forms a clade with Helminthotheca, Picris and Hypochaeris as sister genera, whereas L. subgenus Oporinia appears as a separate clade with strong bootstrap support and is thus better treated as a separate genus. Previous sectional classifications of Leontodon s.l. are considered in the light of DNA and additional morphological and karyological data. Support is presented for a core group of Hypochaeridinae sensu stricto (s.s.) with the two clades of Leontodon s.l., Helminthotheca, Picris, and Hypochaeris, whereas Urospermum, Hyoseris, Aposeris, and Rhagadiolus appear to be positioned more distantly.  相似文献   

3.
4.
Phylogenetic analysis of 330 plastid matK gene sequences, representing 235 genera from 37 of 39 tribes, and four outgroup taxa from eurosids I supports many well-resolved subclades within the Leguminosae. These results are generally consistent with those derived from other plastid sequence data (rbcL and trnL), but show greater resolution and clade support overall. In particular, the monophyly of subfamily Papilionoideae and at least seven major subclades are well-supported by bootstrap and Bayesian credibility values. These subclades are informally recognized as the Cladrastis clade, genistoid sensu lato, dalbergioid sensu lato, mirbelioid, millettioid, and robinioid clades, and the inverted-repeat-lacking clade (IRLC). The genistoid clade is expanded to include genera such as Poecilanthe, Cyclolobium, Bowdichia, and Diplotropis and thus contains the vast majority of papilionoids known to produce quinolizidine alkaloids. The dalbergioid clade is expanded to include the tribe Amorpheae. The mirbelioids include the tribes Bossiaeeae and Mirbelieae, with Hypocalypteae as its sister group. The millettioids comprise two major subclades that roughly correspond to the tribes Millettieae and Phaseoleae and represent the only major papilionoid clade marked by a macromorphological apomorphy, pseudoracemose inflorescences. The robinioids are expanded to include Sesbania and members of the tribe Loteae. The IRLC, the most species-rich subclade, is sister to the robinioids. Analysis of the matK data consistently resolves but modestly supports a clade comprising papilionoid taxa that accumulate canavanine in the seeds. This suggests a single origin for the biosynthesis of this most commonly produced of the nonprotein amino acids in legumes.  相似文献   

5.
A comprehensive higher‐level phylogeny of diving beetles (Dytiscidae) based on larval characters is presented. Larval morphology and chaetotaxy of a broad range of genera and species was studied, covering all currently recognized subfamilies and tribes except for the small and geographically restricted Hydrodytinae, where the larva is unknown. The results suggest several significant conclusions with respect to the systematics of Dytiscidae including the following: monophyly of all currently recognized subfamilies, although Dytiscinae when considered in a broad context is rendered paraphyletic by Cybistrinae; currently recognized tribes are monophyletic except for Agabini, Hydroporini and Laccornellini; inter‐subfamily and inter‐tribe relationships generally show weak support, except for a few well supported clades; three distinct clades are recognized within Dytiscinae [Dytiscini sensu lato (i.e. including the genera Dytiscus Linnaeus and Hyderodes Hope), Hydaticini sensu lato, and Cybistrini]; and recognition of Pachydrini as a distinct tribe. Other less robust results include: Methlini sister to the rest of Hydroporinae; relative basal position of Laccornini, Hydrovatini and Laccornellini within Hydroporinae; close relationship of Agabinae and Copelatinae; Matinae nested deep within Dytiscidae, as sister to a large clade including Colymbetinae, Coptotominae, Lancetinae and Dytiscinae sensu lato; the sister‐group relationship of Agabetini and Laccophilini is confirmed. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets, and the evolution of some significant morphological features is discussed in light of the proposed phylogeny. All suprageneric taxa are diagnosed, including illustrations of all relevant synapomorphies, and a key to separate subfamilies and tribes is presented, both in traditional (paper) format and as an online Lucid interactive identification key.  相似文献   

6.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

7.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

8.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

9.
The Menispermaceae family contains ca. 72 genera with 450 species that are almost entirely tropical. Its phylogeny at the tribal level has never been examined using molecular data. Here we used DNA sequences of the chloroplast matK gene and trnL-F regions, and the nuclear ITS region to study the delimitation and position of the tribe Menispermeae within the family and its subtribal monophyletic groups. Family-wide phylogenetic analyses of the chloroplast data produced two strongly supported clades. The first clade contains two subclades: Coscinieae including Arcangelisia and Anamirta, and Tinosporeae sensu lato including Fibraureae, supported by morphological characters, such as traits of the cotyledon, stylar scar and embryo. The second clade consists of the tribes Menispermeae sensu DC. and Tiliacoreae Miers. All our analyses surprisingly recognized that tribe Menispermeae is not monophyletic unless tribe Tiliacoreae is included, suggesting that characters of cotyledon and stylar scar are very important for the infrafamilial classification, and that endosperm presence vs. absence was over-emphasized in traditionally tribal division of the family. Our topologies indicate a secondary loss of endosperm. The monophyly of two subtribes of the tribe Menispermeae, Stephaniinae and Cissampelinae, is supported by the cpDNA and ITS data, as well as by morphological characters, including aperture types and shapes, and colpal membrane features of pollen grains, and sepal number of male flowers. The Cocculinae was recognized as a paraphyletic group containing the remaining genera of the tribe Menispermeae.  相似文献   

10.
Relationships among the morphologically diverse members of Saxifragaceae sensu lato were inferred using 130 18S rDNA sequences. Phylogenetic analyses were conducted using representatives of all 17 subfamilies of Saxifragaceae sensu lato, as well as numerous additional taxa traditionally assigned to subclasses Magnoliidae, Caryophyllidae, Hamamelidae, Dilleniidae, Rosidae, and Asteridae. This analysis indicates that Saxifragaceae should be narrowly defined (Saxifragaceae sensu stricto) to consist of ~30 herbaceous genera. Furthermore, Saxifragaceae s. s. are part of a well-supported clade (referred to herein as Saxifragales) that also comprises lteoideae, Pterostemonoideae, Ribesioideae, Penthoroideae, and Tetracarpaeoideae, all traditional subfamilies of Saxifragaceae sensu lato, as well as Crassulaceae and Haloragaceae (both of subclass Rosidae). Paeoniaceae (Dilleniideae), and Hamamelidaceae, Cercidiphyllaceae, and Daphniphyllaceae (all of Hamamelidae). The remaining subfamilies of Saxifragaceae sensu lato fall outside this clade. Francoa (Francooideae) and Bauera (Baueroideae) are allied, respectively, with the rosid families Greyiaceae and Cunoniaceae. Brexia (Brexioideae), Parnassia (Parnassioideae), and Lepuropetolon (Lepuropetaloideae) appear in a clade with Celastraceae. Representatives of Phyllonomoideae, Eremosynoideae, Hydrangeoideae, Escallonioideae, Montinioideae, and Vahlioideae are related to taxa belonging to an expanded asterid clade (Asteridae sensu lato). The relationships suggested by analysis of 18S rDNA sequences are highly concordant with those suggested by analysis of rbcL sequences. Furthermore, these relationships are also supported in large part by other lines of evidence, including embryology. serology, and iridoid chemistry.  相似文献   

11.
We determined ∼215 bp of DNA sequence from the 3′-untranslated region (UTR) of 240 cloned L1 (LINE-1) elements isolated from 22 species of Rattus sensu lato and Rattus sensu stricto murine rodents. The sequences were sorted into different L1 subfamilies, and oligonucleotides cognate to them were hybridized to genomic DNA of various taxa. From the distribution of the L1 subfamilies in the various species, we inferred the partial phylogeny of Rattus sensu lato. The four Maxomys species comprise a well-defined clade separate from a monophyletic cluster that contains the two Leopoldamys and four Niviventer species. The Niviventer/Leopoldamys clade, in turn, shares a node with the clade that contains Berylmys, Sundamys, Bandicota, and Rattus sensu stricto. The evolutionary relationships that we deduced agree with and significantly extend the phylogeny of Rattus sensu lato established by other molecular criteria. Furthermore, the L1 amplification events scored here produced a unique phylogenetic tree, that is, in no case did a character (a given L1 amplification event) appear on more than one branch. The lack of homoplasy found in this study supports the robustness of L1 amplification events as phylogenetic markers for the study of mammalian evolution. Received: 8 November 1996 / Accepted: 11 April 1997  相似文献   

12.
Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic.  相似文献   

13.
Tang L  Li LZ  Růžička J 《ZooKeys》2011,(124):19-39
A new cicadellid tribe, Tungurahualini, is recognized to include Tungurahuala Kramer, and a related new genus, Ilyapagen. n., based on six new species. The tribe is included in subfamily Mileewinae, the concept of which is further expanded to include tribes Makilingiini Baker, and Tinteromini Godoy and Webb, taxa previously treated as separate subfamilies. Keys to tribes of Mileewinae (sensu lato) and genera of Tungurahualini are provided. A new species of Tungurahuala, Tungurahuala acuminatasp. n., is also described and keys to species of Tungurahuala and Ilyapa are provided. The new tribe is presently recorded only from cloud forests in the northern Andes Mountains of South America.  相似文献   

14.
Recent molecular systematic investigations suggested that Ferula, an umbellifer genus of about 170 species, is polyphyletic, with its members placed in the apioid superclade and within tribe Scandiceae. We analyzed ITS sequence variation from 134 accessions of Apiaceae, including 83 accessions (74 species) of Ferula to ascertain the phylogenetic position of the genus within the family. Phylogenetic analyses of these data using maximum parsimony, Bayesian, and neighbor-joining methods support the monophyly of Ferula upon the addition of Dorema and Leutea (as Ferula sensu lato) and its placement in tribe Scandiceae. Ferula sensu is closely allied with other major lineages of Scandiceae, corresponding to subtribes Scandicinae, Daucinae, and Torilidinae. Therefore, we recognize the Ferula clade as subtribe Ferulinae. Another addition to tribe Scandiceae is a clade composed of genera Glaucosciadium and Mozaffariania. The three accessions of Ferula misplaced in the apioid superclade represent a species of Silaum.  相似文献   

15.
16.
Using complete cytochrome b sequence data, we determined that the genus Calcarius, as presently recognized, is paraphyletic. Calcarius plus Plectrophenax form a highly supported clade composed of two subclades, a "snow bunting" clade comprised of Plectrophenax plus Calcarius mccownii (formerly in the monotypic genus Rhynchophanes), and a "collared" longspur clade of Calcarius lapponicus, ornatus, and pictus. Contrary to conventional thought, Calcarius is not phylogenetically close to either Calamospiza or Emberiza. Unlike these two genera, the taxonomic affinities of Calcarius appear to lie outside of the sparrow (tribe Emberizini) assemblage. Calcarius appears to be a relatively old songbird lineage, originating between 4.2 and 6.2 million years ago. Within Calcarius, pictus and ornatus form a closely related sister pair (2.9% divergent), as do Calcarius nivalis and hyperboreus (0.18% divergent). The group (Calcarius, sensu lato) is inferred to have its origins at relatively high latitudes in the New World.  相似文献   

17.
Phylogenetic relationships among 23 species of morphologically simple brown algae belonging to the Ectocarpales sensu stricto , Chordariales, Dictyosiphonales, and Tilopteridales sensu stricto , Phaeophyceae (Fucophyceae), were analyzed using chloroplast-encoded RUBISCO large subunit gene sequences ( rbc L) and the associated RUBISCO spacer sequences. Comparison of the observed and expected sequence divergence at the three codon positions of rbc L showed that the level of mutational saturation within the brown algae is minor. Thus, rbc L is well suited for phylogenetic studies in this group. Unweighted parsimony analyses and a neighbor-joining distance analysis were performed using unambiguously aligned rbc L sequences from the above four orders, one marine raphidophyte and two Tribophyceae (Xantophyceae). Polyphyly of Tilopteridales sensu lato (i.e. including Dictyosiphonales) is verified; we therefore recommend the use of Tilopteridales in the strict sense. The Ectocarpales, Chordariales, and Dictyosiphonales are paraphyletic with respect to each other, forming a highly interwoven clade. A separate parsimony analysis of the RUBISCO spacer as well as a combined rbc L and spacer analysis supported the close relationship among the latter three orders, adding to the evidence that they should be subsumed into the Ectocarpales sensu lato.  相似文献   

18.
The Astereae is the largest tribe of Asteraceae in North America. Morphological diversity suggests that the North American assemblage is polyphyletic as 12 endemic genera, as well as lineages of the genus Erigeron and Conyza (Conyzinae), have been hypothesized to represent at least five separate invasions of North America from Africa, Australia, Eurasia, and South America. This hypothesis was tested with a phylogenetic analysis of nucleotide sequence data from the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Sequences for 62 taxa represent seven outgroup taxa and all major Northern and Southern Hemisphere groups of Astereae, including broad taxonomic and geographic sampling of Conyzinae and Aster s.l. (sensu lato). Parsimony analyses indicate that all North American Astereae are members of a strongly supported clade, and that a diverse group of predominantly woody taxa from Africa, Australia, and South America, are basal Astereae. Furthermore, Aster s.l. is deeply polyphyletic as Eurasian taxa, including Aster s.s. (sensu stricto), appear more closely related to Southern Hemisphere taxa than to North American Aster segregates. There is only low to moderate agreement between proposed higher level Astereae relationships based on ITS and those based either on morphology or chloroplast restriction site data.  相似文献   

19.
The tribe Convallarieae, comprising 10 genera and 95 species, has recently been transferred from its own family to Ruscaceae sensu lato. In this study, sequence data from trnK and rbcL were analyzed for 19 species in 8 genera, and chromosome morphology was analyzed for 17 species in 7 genera. The parsimony analysis of trnK and rbcL sequences showed that Convallarieae are monophyletic. Although early branches did not receive strong bootstrap support, Convallaria diverged at the first branch, followed by Speirantha. The rest of the tribe was split into three, well-supported clades: one with Reineckea, the second with Campylandra and Rohdea, and the third with Tupistra, Tricalistra, and Aspidistra. Two monotypic genera, Rohdea and Tricalistra, were embedded in a clade of Campylandra and of Tupistra, respectively. Three karyotypes were distinguished in the tribe on the basis of the basic number and morphology of metaphase chromosomes: Convallaria type (with x=19 and unimodal chromosome length), Tupistra type (with x=19 and trimodal chromosome length), and Aspidistra-elatior type (with x=18 and trimodal chromosome length). The character-state distribution in the molecular tree showed that the Convallaria type is plesiomorphic, from which was derived the Tupistra type and subsequently the Aspidistra-elatior type. Taxonomic treatments to transfer Campylandra to Rohdea and Tricalistra to Tupistra are also given.  相似文献   

20.
Evolutionary relationships in the widely distributed velvet worm Peripatopsis balfouri sensu lato species complex were examined using DNA sequence data, gross and SEM morphology. Sequence data were generated for the COI mtDNA and the 18S rRNA loci and analysed using a Bayesian inference approach, maximum likelihood and maximum parsimony. Phylogenetic analyses of the combined DNA sequence data revealed that Peripatopsis clavigera specimens from the southern Cape (clade 1) was sister to P. balfouri sensu lato specimens from the Cederberg Mountains (clade 2). Within the main P. balfouri sensu lato species complex, three addition clades could be discerned (clades 3, 4 and 5). The obligatory troglobitic species Peripatopsis alba was equidistant between the Cape Peninsula and adjacent interior (clade 3) and the two Boland and Hottentots Holland Mountains (clades 4 and 5). On the Cape Peninsula, P. stelliporata specimens nested among the sympatric P. balfouri sensu lato specimens. The Cape Peninsula specimens were sister to specimens from Jonkershoek site 1, Kogelberg and Simonsberg. Two Boland clades were retrieved, comprising Du Toit's Kloof, Bain's Kloof and Mitchell's Pass and sister (in clade 4) to specimens from the Boland and adjacent Hottentots Holland Mountains in clade 5. These results revealed complex biogeographic patterning in the P. balfouri sensu lato species complex. The presence of sympatric, yet genetically discrete species pairs at six of the sample localities (Du Toit's Kloof, Simonsberg, Jonkershoek sites 1 and 2, Kogelberg and Landroskop) suggests that there is reproductive isolation between the lineages. Divergence time estimations suggest a Miocene/Pliocene/Pleistocene cladogenesis. A taxonomic revision of the P. balfouri sensu lato species complex was undertaken to stabilize the taxonomy. P. clavigera is monophyletic and retained for the southern Cape specimens, P. balfouri sensu stricto is now confined to the Cape Peninsula and adjacent interior, while P. stelliporata is regarded as a junior synonym of the latter taxon, P. alba is endemic to the Wynberg Cave systems on the Cape Peninsula. Three novel species (Peripatopsis cederbergiensis, sp. n., Peripatopsis bolandi sp. n. and Peripatopsis purpureus, sp. n.) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号