首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of internal tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) were studied on human cardiac sodium channels (hH1) expressed in a mammalian tsA201 cell line. Outward currents were measured at positive voltages using a reversed Na gradient. TBA and TPeA cause a concentration-dependent increase in the apparent rate of macroscopic Na current inactivation in response to step depolarizations. At TPeA concentrations < 50 microM the current decay is well fit by a single exponential over a wide voltage range. At higher concentrations a second exponential component is observed, with the fast component being dominant. The blocking and unblocking rate constants of TPeA were estimated from these data, using a three-state kinetic model, and were found to be voltage dependent. The apparent inhibition constant at 0 mV is 9.8 microM, and the blocking site is located 41 +/- 3% of the way into the membrane field from the cytoplasmic side of the channel. Raising the external Na concentration from 10 to 100 mM reduces the TPeA-modified inactivation rates, consistent with a mechanism in which external Na ions displace TPeA from its binding site within the pore. TBA (500 microM) and TPeA (20 microM) induce a use-dependent block of Na channels characterized by a progressive, reversible, decrease in current amplitude in response to trains of depolarizing pulses delivered at 1-s intervals. Tetrapropylammonium (TPrA), a related symmetrical tetra-alkylammonium (TAA), blocks Na currents but does not alter inactivation (O'Leary, M. E., and R. Horn. 1994. Journal of General Physiology. 104:507-522.) or show use dependence. Internal TPrA antagonizes both the TPeA-induced increase in the apparent inactivation rate and the use dependence, suggesting that all TAA compounds share a common binding site in the pore. A channel blocked by TBA or TPeA inactivates at nearly the normal rate, but recovers slowly from inactivation, suggesting that TBA or TPeA in the blocking site can interact directly with a cytoplasmic inactivation gate.  相似文献   

2.
Tyrosinase plays various roles in organisms and much research has focused on the regulation of tyrosinase activity. We studied the inhibitory effect of thiobarbituric acid (TBA) on tyrosinase. Our kinetic study showed that TBA inhibited tyrosinase in a reversible noncompetitive manner (K(i) 5 14.0 ± 8.5 mM and IC?? 5 8.0 ± 1.0 mM). Intrinsic and ANS-binding fluorescences studies were also performed to gain more information regarding the binding mechanism. The results showed that no tertiary structural changes were obviously observed. For further insight, we predicted the 3D structure of tyrosinase and simulated the docking between tyrosinase and TBA. The docking simulation was successful with significant scores (binding energy for AutoDock4: -5.52 kcal/mol) and suggested that TBA was located in the active site. The 11 ns molecular dynamics simulation convinced that the four HIS residues (residue numbers: 57, 90, 250, and 282) were commonly responsible for the interaction with TBA. Our results provide a new inhibition strategy that works using an antioxidant rather than targeting the copper ions within the tyrosinase active site.  相似文献   

3.
Zhang SB  Huang J  Zhao H  Zhang Y  Hou CH  Cheng XD  Jiang C  Li MQ  Hu J  Qian RL 《Cell research》2003,13(5):351-360
Using atomic force microscopy (AFM), the dynamic process of the in vitro nucleosome reconstitution followed by slow dilution from high salt to low salt was visualized. Data showed that the histone octamers were dissociatedfrom DNA at 1M NaC1. When the salt concentration was slowly reduced to 650 mM and 300 mM, the core histones bound to the naked DNA gradually. Once the salt concentration was reduced to 50 mM the classic “beads-on-a-string“ structure was clearly visualized. Furthermore, using the technique of the in vitro reconstitution of nucleosome,the mono- and di- nucleosomes were assembled in vitro with both HS2core (-10681 to -10970 bp) and NCR2 (-372to -194 bp) DNA sequences in the 5‘flanking sequence of human b-globin gene. Data revealed that HMG 1/2 and HMG 14/17 proteins binding to both DNA sequences are changeable following the assembly and disassembly of nucleosomes. We suggest that the changeable binding patterns of HMG 14/17 and HMG1/2 proteins with these regulatory elements may be critical in the process of nucleosome assembly, recruitment of chromatin-modifying activities, and the regulation of human b-globin gene expression.  相似文献   

4.
Polycystin-L (PCL), homologous to polycystin-2 (71% similarity in protein sequence), is the third member of the polycystin family of proteins. Polycystin-1 and -2 are mutated in autosomal dominant polycystic kidney disease, but the physiological role of PCL has not been determined. PCL acts as a Ca-regulated non-selective cation channel permeable to mono- and divalent cations. To further understand the biophysical and pharmacological properties of PCL, we examined a series of organic cations for permeation and inhibition, using single-channel patch clamp and whole-cell two-microelectrode voltage clamp techniques in conjunction with Xenopus oocyte expression. We found that PCL is permeable to organic amines, methlyamine (MA, 3.8 A), dimethylamine (DMA, 4.6 A) and triethylamine (TriEA, 6 A), and to tetra-alkylammonium cation (TAA) tetra-methylammonium (TMA, 5.5-6.4 A). TAA compounds tetra-ethylammonium (TEA, 6.1-8.2 A) and tetra-propylammonium (TPA, 9.8 A) were impermeable through PCL and exhibited weak inhibition on PCL (IC50 values>13 mM). Larger TAA cations tetra-butylammonium (TBA, 11.6 A) and tetra-pentylammonium (TPeA, 13.2 A) were impermeable through PCL as well and showed strong inhibition (IC50 values of 2.7 mM and 1.3 microM, respectively). Inhibition by TBA was on decreasing the single-channel current amplitude and exhibited no effect on open probability (NPo) or mean open time (MOT), suggesting that it blocks the PCL permeation pathway. In contract, TEA, TPA and TPeA reduced NPo and MOT values but had no effect on the amplitude, suggesting their binding to a different site in PCL, which affects the channel gating. Taken together, our studies revealed that PCL is permeable to organic amines and TAA cation TMA, and that inhibition of PCL by large TAA cations exhibits two different mechanisms, presumably through binding either to the pore pathway to reduce permeant flux or to another site to regulate the channel gating. These data allow to estimate a channel pore size of approximately 7 A for PCL.  相似文献   

5.
6.
The initial reactions in the cometabolic oxidation of the gasoline oxygenate, methyl tert-butyl ether (MTBE), by Mycobacterium vaccae JOB5 have been characterized. Two products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), rapidly accumulated extracellularly when propane-grown cells were incubated with MTBE. Lower rates of TBF and TBA production from MTBE were also observed with cells grown on 1- or 2-propanol, while neither product was generated from MTBE by cells grown on casein-yeast extract-dextrose broth. Kinetic studies with propane-grown cells demonstrated that TBF is the dominant (> or = 80%) initial product of MTBE oxidation and that TBA accumulates from further biotic and abiotic hydrolysis of TBF. Our results suggest that the biotic hydrolysis of TBF is catalyzed by a heat-stable esterase with activity toward several other tert-butyl esters. Propane-grown cells also oxidized TBA, but no further oxidation products were detected. Like the oxidation of MTBE, TBA oxidation was fully inhibited by acetylene, an inactivator of short-chain alkane monooxygenase in M. vaccae JOB5. Oxidation of both MTBE and TBA was also inhibited by propane (K(i) = 3.3 to 4.4 microM). Values for K(s) of 1.36 and 1.18 mM and for V(max) of 24.4 and 10.4 nmol min(-1) mg of protein(-1) were derived for MTBE and TBA, respectively. We conclude that the initial steps in the pathway of MTBE oxidation by M. vaccae JOB5 involve two reactions catalyzed by the same monooxygenase (MTBE and TBA oxidation) that are temporally separated by an esterase-catalyzed hydrolysis of TBF to TBA. These results that suggest the initial reactions in MTBE oxidation by M. vaccae JOB5 are the same as those that we have previously characterized in gaseous alkane-utilizing fungi.  相似文献   

7.
The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5'-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity mu-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris-HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+, 2.9 mM and Li+, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the mu-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris-HCl. In 50 mM Tris-HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris-HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited. [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris-HCl, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Polycystin-L (PCL), homologous to polycystin-2 (71% similarity in protein sequence), is the third member of the polycystin family of proteins. Polycystin-1 and -2 are mutated in autosomal dominant polycystic kidney disease, but the physiological role of PCL has not been determined. PCL acts as a Ca-regulated non-selective cation channel permeable to mono- and divalent cations. To further understand the biophysical and pharmacological properties of PCL, we examined a series of organic cations for permeation and inhibition, using single-channel patch clamp and whole-cell two-microelectrode voltage clamp techniques in conjunction with Xenopus oocyte expression. We found that PCL is permeable to organic amines, methlyamine (MA, 3.8 Å), dimethylamine (DMA, 4.6 Å) and triethylamine (TriEA, 6 Å), and to tetra-alkylammonium cation (TAA) tetra-methylammonium (TMA, 5.5-6.4 Å). TAA compounds tetra-ethylammonium (TEA, 6.1-8.2 Å) and tetra-propylammonium (TPA, 9.8 Å) were impermeable through PCL and exhibited weak inhibition on PCL (IC50 values>13 mM). Larger TAA cations tetra-butylammonium (TBA, 11.6 Å) and tetra-pentylammonium (TPeA, 13.2 Å) were impermeable through PCL as well and showed strong inhibition (IC50 values of 2.7 mM and 1.3 μM, respectively). Inhibition by TBA was on decreasing the single-channel current amplitude and exhibited no effect on open probability (NPo) or mean open time (MOT), suggesting that it blocks the PCL permeation pathway. In contract, TEA, TPA and TPeA reduced NPo and MOT values but had no effect on the amplitude, suggesting their binding to a different site in PCL, which affects the channel gating. Taken together, our studies revealed that PCL is permeable to organic amines and TAA cation TMA, and that inhibition of PCL by large TAA cations exhibits two different mechanisms, presumably through binding either to the pore pathway to reduce permeant flux or to another site to regulate the channel gating. These data allow to estimate a channel pore size of ∼7 Å for PCL.  相似文献   

9.
The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high K(s) value (20 to 40 mM) for MTBE.  相似文献   

10.
The radiolabeled thromboxane A2/prostaglandin H2 (TXA2/PGH2) agonist 125I-BOP bound to the TXA2/PGH2 receptor on human platelet membranes. Scatchard analysis showed that pretreatment of platelet membranes with the reducing agent dithiothreitol (DTT) (10 mM) for 10 min decreased maximal 125I-BOP binding (Bmax) from 1.51 +/- 0.11 pmol/mg to 0.51 +/- 0.05 pmol/mg (p = 0.001) and increased the affinity of the remaining binding sites (Kd = 647 +/- 64 pM (untreated), 363 +/- 46 pM (treated), p = 0.006). Prolonged incubation of membranes with DTT (10 mM) for 40 min further reduced the Bmax to 0.23 +/- 0.08 pmol/mg (p = 0.001 from untreated), and the binding affinity remained elevated (Kd = 334 +/- 117 pM, p = 0.035 from untreated). Kinetic analysis of 125I-BOP binding indicated that the apparent increase in binding affinity after DTT treatment was due exclusively to an increase in the rate of ligand-receptor association with no change in dissociation rate. The effects of DTT on 125I-BOP binding were dose-dependent with an EC50 of 8.1 +/- 0.2 mM. DTT inactivation of TXA2/PGH2 receptors was time-dependent with a second order rate constant (k2) of 0.123 M-1 s-1 at 20 degrees C. The platelet membrane 125I-BOP binding site was partially protected from DTT inactivation by prior occupation with the ligand. TXA2/PGH2 receptor protection by I-BOP was dose-dependent and linearly related (r = 0.97, p = 0.002) to the proportion of receptors occupied, but was incomplete since agonist occupation of 89% of the total number of receptors resulted in only a 38% protective effect. Inhibition of 125I-BOP binding after reduction with DTT could be made permanent by addition of the sulfhydryl alkylating agent N-ethylmaleimide (25 mM), but was completely reversed by reoxidation with dithionitrobenzoic acid (DTNB) (5 mM). Oxidation of untreated receptors with DTNB resulted in a 64% increase in 125I-BOP binding sites from 1.65 +/- 0.12 pmol/mg to 2.70 +/- 0.08 pmol/mg (p = 0.013) without affecting binding affinity. DTNB-induced increases in 125I-BOP binding were concentration-dependent with an EC50 of 668 +/- 106 microM and occurred in less than 1 min at 37 degrees C. In the absence of DTT, alkylation of free sulfhydryl groups with N-ethylmaleimide reduced 125I-BOP Bmax in platelet membranes to 0.85 +/- 0.08 pmol/mg (p = 0.003), but did not change the affinity of the remaining receptors. The EC50 for N-ethylmaleimide inactivation of TXA2/PGH2 receptors was 139 +/- 8 mM, and the k2 in time course experiments was 0.067 M-1 s-1 at 20 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1 degrees alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2 degrees alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 micromoles) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1 degrees alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 +/- 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 micromoles) and n-butane (Ki = 16 micromoles) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.  相似文献   

12.
Methimazole (MMI) and propylthiouracil (PTU) are widely used for the treatment of Graves' disease. However, no studies have been reported on the action of these drugs on binding of L-triiodothyronine (T3) to the nuclear receptor. T3 receptors of rat liver nuclei, prepared by differential centrifugation, were extracted with 0.4 M KCl and 5 mM dithiothreitol (DTT). In the assessment of T3 binding to the DTT-reduced receptor, the hepatic nuclear extract was chromatographed on Superose 6 to remove DTT and isolate proteins of relative mass approximately 50,000 (chromatographed nuclear receptors (CNRs)), prior to the addition of [125I]T3 of high specific activity (3300 microCi/micrograms; 1 Ci = 37 GBq). MMI or PTU at 2 mM reduced specific T3 binding to CNR by 84% and 85%, respectively. The inhibitory effects of these reagents and 2 mM sodium arsenite (which complexes dithiols) were additive. Scatchard analyses indicated that neither MMI nor PTU (at 2 mM) significantly altered the affinity constant (Ka) (from 2.41 x 10(9) to 1.74 x 10(9) M-1 for PTU and 1.79 x 10(9) M-1 for MMI), while they both decreased (p less than 0.02) maximal binding capacity (from 0.36 +/- 0.02 to 0.19 +/- 0.02 pmol/mg protein for MMI and 0.17 +/- 0.02 pmol/mg protein for PTU). Dose-response curves showed that 50% inhibition was attained at 0.6 mM PTU or 1.0 mM MMI with approximately 25% inhibition by both at 0.1 mM. Artefactual binding effects by MMI and PTU on [125I]T3 were excluded by chromatography experiments. Similar results were obtained using nuclear receptors prepared from livers of hyperthyroid rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-kappaB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5'-GGGAAATTCC-3') and Ig-kappa B (5'-GGGACTTTCC-3') but had a negligible effect on the dissociation from the palindromic target-kappaB binding site (5'-GGGAATTCCC-3'). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein--DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-kappaB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-kappaB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a K(D) of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.  相似文献   

14.
To investigate aspects of the biochemical nature of membrane-bound dopamine D1 receptors, rat striatal homogenates were pretreated with heavy metal cations and some other chemical agents, and their effects on D1 receptors were subsequently determined using a standard [3H](R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1-N-3- benzazepine([3H]SCH 23390) binding assay. Incubation of striatal membranes with as little as 1 microM Hg2+, 10 microM Cu2+, and 10 microM Cd2+ completely prevented specific [3H]SCH 23390 binding. The effect of Cu2+, 1.5 microM, was noncompetitive in nature, whereas 3-5 microM Cu2+ afforded mixed-type inhibition. The inhibitory effect of Cu2+ was fully reversed by dithiothreitol (0.1-1 mM). Cu2+ (2 microM) did not affect the affinity of cis-flupenthixol or clozapine for remaining [3H]SCH 23390 sites. A second series of cations, Co2+ (30 microM), Ni2+ (30 microM), Mn2+ (1 mM), Ca2+ (25 mM), and Ba2+ (20 mM), inhibited specific [3H]SCH 23390 binding by 50% at the concentrations indicated. The thiol alkylating reagent N-ethylmaleimide (NEM) (0.2 mM) reduced specific binding by 70%. The effect of NEM was completely prevented by coincubation with a D1 receptor saturating concentration of SCH 23390 (20 nM) or dopamine (10 microM). The results indicated that the dopamine D1 receptor is a thiol protein and that a thiol group is essential for the ligand binding.  相似文献   

15.
Binding studies with [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT), a specific serotonin1A (5-HT1A) receptor agonist, were done on the autopsied brains from control subjects and from patients with chronic schizophrenia. All the patients and controls were of the Japanese race. In the controls, representative Scatchard plots for the specific [3H]8-OH-DPAT bindings in the prefrontal cortex and hippocampus revealed a single component of high affinity binding site (Kd value = 5.7 and 5.9 nM, Bmax value = 80.1 and 101.0 fmol/mg protein, respectively). The [3H]8-OH-DPAT bindings to the prefrontal cortex and hippocampus were potently inhibited by serotonin (IC50 = 6.3 x 10(-9) M) and 5-HT1A agonists (IC50 = 5.0 x 10(-9) - 2.3 x 10(-7) M), while other neurotransmitters, 5-HT2 and 5-HT3 related compounds did not inhibit the binding (IC50 greater than 10(-5) M). The bindings were decreased in the presence of 0.1mM GTP and 0.1mM GppNHp but not in the presence of 0.1mM GMP. In the prefrontal and temporal cortices of schizophrenics, there was a significant increase in the specific [3H]8-OH-DPAT binding, by 40% and 60%, respectively, with no change in the hippocampus, amygdala, cingulum, motor cortex, parietal or occipital cortex, as compared to findings in the controls. Scatchard analysis showed that this increased binding reflects changes in the number of sites but not in the affinity. The effect of 0.1mM GppNHp on the binding to prefrontal cortex was observed in both controls and schizophrenic patients. The bindings were significantly greater in the schizophrenic patients than in controls, in the presence of 0.1mM GppNHp. Our findings suggest that there are GTP-sensitive 5-HT1A sites in the human brain and that selective increases in GTP-sensitive 5-HT1A sites in the prefrontal and temporal cortices of schizophrenics relate to the pathophysiology of schizophrenia.  相似文献   

16.
This paper reports on the isolation of a cDNA clone ( tba-6 ) encoded by a novel a-tubulin gene in the nematode C. elegans . The tba-6 gene is located on chromosome I, that encode a protein of 460 amino acids, as well as the expression of the gene during the development. Here we discuss the structure of the coding region and the regulatory sequences in the promoter region. The comparison of the amino acid sequence of TBA6 with other α-tubulin isotypes of C. elegans , suggests that these proteins are highly conserved in most of the N-terminal and intermediate sequence, but they have highly divergent C-terminal sequences. TBA6 has also high homology with other α-tubulin families (e.g. human, mouse, Drosophila melangaster ). The in situ experiment results suggest that the tba-6 α-tubulin gene is required during the entire embryonic development, therefore it is required during the early cell division stages. Further, we determined the 3D structure of C. elegans TBA6 α-tubulin by altering (computationally) the crystal structure of the α-tubulin (TBA_pig) from porcine α-β tubulin dimer. We discuss structural conservation and changes in the pattern of interactions between secondary structure elements of TBA_pig and TBA6, respectively.  相似文献   

17.
The human heart Na channel (hH1) was expressed by transient transfection in tsA201 cells, and we examined the block of Na current by a series of symmetrical tetra-alkylammonium cations: tetramethylammonium (TMA), tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA). Internal TEA and TBA reduce single-channel current amplitudes while having little effect on single channel open times. The reduction in current amplitude is greater at more depolarized membrane potentials. Analysis of the voltage-dependence of single-channel current block indicates that TEA, TPrA and TBA traverse a fraction of 0.39, 0.52, and 0.46 of the membrane electric field to reach their binding sites. Rank potency determined from single-channel experiments indicates that block increases with the lengths of the alkyl side chains (TBA > TPrA > TEA > TMA). Internal TMA, TEA, TPrA, and TBA also reduce whole-cell Na currents in a voltage-dependent fashion with increasing block at more depolarized voltages, consistent with each compound binding to a site at a fractional distance of 0.43 within the membrane electric field. The correspondence between the voltage dependence of the block of single-channel and macroscopic currents indicates that the blockers do not distinguish open from closed channels. In support of this idea TPrA has no effect on deactivation kinetics, and therefore does not interfere with the closing of the activation gates. At concentrations that substantially reduce Na channel currents, TMA, TEA, and TPrA do not alter the rate of macroscopic current inactivation over a wide range of voltages (-50 to +80 mV). Our data suggest that TMA, TEA, and TPrA bind to a common site deep within the pore and block ion transport by a fast-block mechanism without affecting either activation or inactivation. By contrast, internal TBA and TPeA increase the apparent rate of inactivation of macroscopic currents, suggestive of a block with slower kinetics.  相似文献   

18.
The histidine-glycine-rich region of the light chain of cleaved high molecular weight kininogen (HK) is thought to be responsible for binding to negatively charged surfaces and initiation of the intrinsic coagulation, fibrinolytic, and kinin-forming systems. However, the specifically required amino acid sequences have not been delineated. An IgG fraction of a monoclonal antibody (MAb) C11C1 to the HK light chain was shown to inhibit by 66% the coagulant activity and by 57% the binding of HK to the anionic surface of kaolin at a concentration of 1.5 microM and 27 microM, respectively. Proteolytic fragments of HK were produced by successive digestion with human plasma kallikrein and factor XIa (FXIa). Those polypeptides that bound tightly (Kd = 0.77 nM) to a C11C1 affinity column were eluted at pH 3.0 and purified by membrane filtration. On 15% SDS polyacrylamide electrophoresis, the approximate M(r) was 7.3 kDa (range 6.2-8.1 kDa). Based on N-terminal sequencing, this polypeptide (1(2)), which extends from the histidine residue 459 to a lysine at position 505, 509, 511, 512, 515, or 520, inhibits by 50% the coagulant activity expressed by HK at a concentration of 22 microM. The synthetic peptide HGLGHGH representing the N-terminal of the 1(2)) fragment was synthesized, tested, and found at 4 mM to inhibit the procoagulant activity of HK 50%. A synthetic heptadecapeptide, HGLGHGHEQQHGLGHGH (residues 459-475) included within the 1(2) fragment, and with the ability to bind zinc, inhibited 50% of the HK coagulant activity at a concentration of 325 microM in the absence and presence of added Zn2+ (30 microM). The specific binding of 125I-HK to a negatively charged surface (kaolin) was inhibited 50% by unlabeled HK (5 microM). HGLGHGH, at a concentration of 7.0 mM, inhibited the binding to kaolin by 50%. The heptadecapeptide inhibited the specific binding of 125I-HK to kaolin by 50%, at a concentration of 2.3 mM, in the absence of Zn2+. In contrast, when Zn2+ was added, the concentration to achieve 50% inhibition decreased to 630 microM, indicating that Zn2+ was required to attain a favorable conformation for binding. Moreover, the 1(2) fragment was found to inhibit 50% of the 125I-HK binding to kaolin at a concentration of 380 microM. These results suggest that residues contained within the 1(2) fragment, notably HGLGHGHEQQHGLGHGH, serves as a primary structural feature for binding to a negatively charged surface.  相似文献   

19.
Desferrioxamine protects human red blood cells from hemin-induced hemolysis   总被引:1,自引:0,他引:1  
Hemin binding to red cell membranes, its effect on red cell hemolysis, and it interaction with desferrioxamine (DFO) in these processes were investigated. DFO interacted with hemin via the iron moiety. Blockage of the binding groups in DFO prevented interaction of DFO with hemin, implying the importance of the hydroxamic acid groups in DFO-hemin interactions. Since hemolysis is a result of hemin association with the membrane components, its binding in the presence and absence of DFO was studied. DFO strongly inhibited hemin-induced lysis in a concentration-dependent manner. With 50 microM hemin, 1 mM DFO completely inhibited lysis. Preincubation of ghost membranes with DFO (1 mM) inhibited binding of hemin (50 microM) to membranes by 42%. After ghost membranes were preincubated with hemin (50 microM), the addition of DFO (1 mM) removed 20% of the membrane-bound hemin. It is suggested that DFO may have an important role in alleviating the hemin-induced deleterious effects on the red cell membrane, especially in hemolytic anemias associated with unstable, autoxidized hemoglobins.  相似文献   

20.
The cytosol fraction of rat testicular homogenates contained a specific androgen binding protein (t-ABP), indistinguishable from, the androgen binding protean in. the epididymis(e-ABP) in terms of its chromatographic behaviour by gel filtration, sedimentation rate, mobility on polyacrylamide electrophoresis and steroid specificity(5α-diaydrotestosterone(DHT) > testosterone > estradiol-17β > parogesterone and estradiol-17α).The stability of t-ABP as well was similar to that of e-ABP. The aBP-DHT complexes were stable between pH 6.5–10, exhibiting the highest degree of binding between pH 8–9. The binding activity persisted after heating at 50°C for 30 min., whereas heating at 60°C for 30 min. completely destroyed the binding. DHT did not significantly increase the stability towards pH and temperature denaturation. Binding activity was not reduced by 1 mM p-chloro-mercuri-phenyl-sulphonate (PCMPS), whereas similar treatment with 1 nM N-ethyl-maleimide(NEM) or 1 mM Ellman's reagent reduced it by some 10–50 per cent. Exposure to 10 mM β-mercaptoethanol(βME) reduced the binding by 60–70 per cent. These studies strongly indicate that t-ABP and e-ABP are identical proteins.Hemicastration for 4 weeks eliminated the ABP from the epididymal cytosol fraction on the castrated side, indicating that this protein is produced by the testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号