共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscopy (AFM) can detect the adhesion or affinity force between a sample surface and cantilever, dynamically. This feature is useful as a method for the selection of aptamers that bind to their targets with very high affinity. Therefore, we propose the Systematic Evolution of Ligands by an EXponential enrichment (SELEX) method using AFM to obtain aptamers that have a strong affinity for target molecules. In this study, thrombin was chosen as the target molecule, and an ‘AFM-SELEX’ cycle was performed. As a result, selected cycles were completed with only three rounds, and many of the obtained aptamers had a higher affinity to thrombin than the conventional thrombin aptamer. Moreover, one type of obtained aptamer had a high affinity to thrombin as well as the anti-thrombin antibody. AFM-SELEX is, therefore, considered to be an available method for the selection of DNA aptamers that have a high affinity for their target molecules. 相似文献
2.
Lijun Wang Ronghui Wang Hua Wei Yanbin Li 《World journal of microbiology & biotechnology》2018,34(10):149
Aptamers are short nucleotide sequences which can specifically bind to a variety of targets with high affinity. They are identified and selected via systematic evolution of ligands by exponential enrichment (SELEX). Compared to antibodies, aptamers offer several advantages including easy labeling, high stability and lower cost. Those advantages make it possible to be a potential for use as a recognition probe to replace antibody in the diagnostic field. This article is intended to provide a comprehensive review, which is focused on systemizing recent advancements concerning SELEX procedures, with special emphasis on the key steps in SELEX procedures. The principles of various aptamer-based detections of pathogenic bacteria and their application are discussed in detail, including colorimetric detection, fluorescence detection, electrochemical detection, lateral flow strip test, mass sensitive detection and PCR-based aptasensor. By discussing recent research and future trends based on many excellent publications and reviews, we attempt to give the readers a comprehensive view in the field of aptamer selection against pathogenic bacteria and their diagnostics application. Authors hope that this review will promote lively and valuable discussions in order to generate new ideas and approaches towards the development of aptamer-based methods for application in pathogenic bacteria diagnosis. 相似文献
3.
A novel strategy for the fabrication of an electrochemical aptasensor is proposed; this strategy has been employed in this work to assay thrombin concentration. Two well-designed oligonucleotides were used as the core element. G-quadruplex–hemin complexes can be formed on the surface of the electrode to give a detectable signal only when thrombin is not bound to the aptamers. The detection limit of the biosensor has been lowered to 10 nM. Moreover, since the electroactive probe is not required to be bound to the oligonucleotide, this strategy may integrate the advantages of being both label-free and cost-effective. 相似文献
4.
5.
G. S. Zamay I. V. Belyanina A. S. Zamay M. A. Komarova A. V. Krat E. N. Eremina R. A. Zukov A. E. Sokolov T. N. Zamay 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2016,10(2):158-164
A method of selection of DNA aptamers to breast tumor tissue based on the use of postoperative material has been developed. Breast cancer tissues were used as the positive target; the negative targets included benign tumor tissue, adjacent healthy tissues, breast tissues from mastopathy patients, and also tissues of other types of malignant tumors. During selection a pool of DNA aptamers demonstrating selective binding to breast cancer cells and tissues and insignificant binding to breast benign tissues has been obtained. These DNA aptamers can be used for identification of protein markers, breast cancer diagnostics, and targeted delivery of anticancer drugs. 相似文献
6.
Hari P. Dwivedi R. Derike Smiley Lee-Ann Jaykus 《Applied microbiology and biotechnology》2013,97(8):3677-3686
Alternative ligands such as nucleic acid aptamers can be used for pathogen capture and detection and offer advantages over antibodies, including reduced cost, ease of production and modification, and improved stability. DNA aptamers demonstrating binding specificity to Salmonella enterica serovar Typhimurium were identified by whole-cell-systematic evolution of ligands by exponential enrichment (SELEX) beginning with a combinatorial library of biotin-labeled single stranded DNA molecules. Aptamer specificity was achieved using whole-cell counter-SELEX against select non-Salmonella genera. Aptamers binding to Salmonella were sorted, cloned, sequenced, and characterized for binding efficiency. Out of 18 candidate aptamers screened, aptamer S8-7 showed relatively high binding affinity with an apparent dissociation constant (K d value) of 1.73?±?0.54 μM and was selected for further characterization. Binding exclusivity analysis of S8-7 showed low apparent cross-reactivity with other foodborne bacteria including Escherichia coli O157: H7 and Citrobacter braakii and moderate cross-reactivity with Bacillus cereus. Aptamer S8-7 was successfully used as a ligand for magnetic capture of serially diluted Salmonella Typhimurium cells, followed by downstream detection using qPCR. The lower limit of detection of the aptamer magnetic capture-qPCR assay was 102–103?CFU equivalents of Salmonella Typhimurium in a 290-μl sample volume. Mean capture efficiency ranged from 3.6 to 12.6 %. Unique aspects of the study included (a) the use of SELEX targeting whole cells; (b) the application of flow cytometry for aptamer pool selection, thereby favoring purification of ligands with both high binding affinity and targeting abundant cell surface moieties; and (c) the use of pre-labeled primers that circumvented the need for post-selection ligand labeling. Taken together, this study provides proof-of-concept that biotinylated aptamers selected by whole-cell SELEX can be used in a qPCR-based capture-detection platform for Salmonella Typhimurium. 相似文献
7.
Assays for cytokines using aptamers 总被引:2,自引:0,他引:2
Aptamers are short nucleic acid sequences that are used as ligands to bind their targets with high affinity. They are generated via the combinatorial chemistry procedure systematic evolution of ligands by exponential enrichment (SELEX). Aptamers have shown much promise towards detection of a variety of protein targets, including cytokines. Specifically, for the determination of cytokines and growth factors, several assays making use of aptamers have been developed, including aptamer-based enzyme-linked immunosorbent assays, antibody-linked oligonucleotide assay, fluorescence (anisotropy and resonance energy transfer) assays, and proximity ligation assays. In this article, the concept of aptamer selection using SELEX and the assay formats using aptamers for the detection of cytokines are discussed. 相似文献
8.
Alzheimer''s disease (AD) is the most common form of dementia. It is the sixth leading cause of death in old age people. Despiterecent advances in the field of drug design, the medical treatment for the disease is purely symptomatic and hardly effective. Thusthere is a need to understand the molecular mechanism behind the disease in order to improve the drug aspects of the disease. Weprovided two contributions in the field of proteomics in drug design. First, we have constructed a protein-protein interactionnetwork for Alzheimer''s disease reviewed proteins with 1412 interactions predicted among 969 proteins. Second, the diseaseproteins were given confidence scores to prioritize and then analyzed for their homology nature with respect to paralogs andhomologs. The homology persisted with the mouse giving a basis for drug design phase. The method will create a new drug designtechnique in the field of bioinformatics by linking drug design process with protein-protein interactions via signal pathways. Thismethod can be improvised for other diseases in future. 相似文献
9.
ATP occupies a central position in biology, for it is both an elementary building block of RNA and the most widely used cofactor in all living organisms. For this reason, it has been a recurrent target for in vitro molecular evolution techniques. The exploration of ATP-binding motifs constitutes both an important step in investigating the plausibility of the ‘RNA world’ hypothesis and a central starting point for the development of new enzymes. To date, only two RNA motifs that bind ATP have been characterized. The first one is targeted to the adenosine moiety, while the second one recognizes the ‘Hoogsteen’ face of the base. To isolate aptamers that bind ATP in different orientations, we selected RNAs on an affinity resin that presents ATP in three different orientations. We obtained five new motifs that were characterized and subsequently submitted to a secondary selection protocol designed to isolate aptamers specific for cordycepin. Interestingly, all the ATP-binding motifs selected specifically recognize the sugar-phosphate backbone region of the nucleotides. Three of the aptamers show some selectivity for adenine derivatives, while the remainder recognize any of the four nucleotides with similar efficiency. The characteristics of these aptamers are discussed along with implications for in vitro molecular evolution. 相似文献
10.
构建随机ssDNA文库,通过SELEX技术,以正常、炎性宫颈脱落细胞为反筛细胞,以上皮内低级别病变(CIN1)、上皮内高级别病变(CIN2、CIN3)和鳞状细胞癌脱落细胞为正筛细胞,经过12轮筛选特异性适配子高度富集得到宫颈癌前病变适配子库,经特异性、亲和力分析和细胞免疫荧光确立高特异性适配子CIN-Ap4可作为诊断宫颈癌前病变生物标志物,为宫颈癌前病变分子诊断奠定理论基础,提供新思路。利用Prime Premier 5.0设计构建了随机ssDNA文库并根据文库两端固定序列设计引物,对对称PCR和间接不对称PCR中的退火温度、循环数以及上、下游引物浓度比等条件进行优化,分析确定50μL反应体系中对称PCR的最佳反应条件为:最佳退火温度为49.5℃,最佳循环数为15个循环;间接不对称PCR的最佳反应条件为:50μL反应体系中上、下游引物浓度的最佳比例为80∶1,最佳循环数为35个循环。实验结果表明成功构建了寡核苷酸文库,在最适PCR条件下可获得理想的dsDNA和ssDNA,并具有良好的重复性,为顺利筛选适配子提供保证。 相似文献
11.
Sahar Javaherian Michael U. Musheev Mirzo Kanoatov Maxim V. Berezovski Sergey N. Krylov 《Nucleic acids research》2009,37(8):e62
Functional genomics requires structural and functional studies of a large number of proteins. While the production of proteins through over-expression in cultured cells is a relatively routine procedure, the subsequent protein purification from the cell lysate often represents a significant challenge. The most direct way of protein purification from a cell lysate is affinity purification using an affinity probe to the target protein. It is extremely difficult to develop antibodies, classical affinity probes, for a protein in the cell lysate; their development requires a pure protein. Thus, isolating the protein from the cell lysate requires antibodies, while developing antibodies requires a pure protein. Here we resolve this loop problem. We introduce AptaPIC, Aptamer-facilitated Protein Isolation from Cells, a technology that integrates (i) the development of aptamers for a protein in cell lysate and (ii) the utilization of the developed aptamers for protein isolation from the cell lysate. Using MutS protein as a target, we demonstrate that this technology is applicable to the target protein being at an expression level as low as 0.8% of the total protein in the lysate. AptaPIC has the potential to considerably speed up the purification of proteins and, thus, accelerate their structural and functional studies. 相似文献
12.
The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene–protein regulatory
networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural
network. Through tuning the gene–protein interaction network and the initial gene/protein expression values, different states
of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this
approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local
field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural
network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.
相似文献
Nikola KasabovEmail: |
13.
Using an evolution-mimicking algorithm (EMA), we have recently identified DNA aptamers that inhibit Taq DNA polymerase. In the present study, we have attempted to improve further the inhibitory activities of aptamers, as well as to characterize those aptamers with the most potent inhibitory activities. To characterize the most potent aptamer and demonstrate its applicability, the abilities to inhibit Tth DNA polymerase and to modulate specific amplification in PCR were investigated. This aptamer inhibited both Tth DNA polymerase and Taq DNA polymerase and improved the specificity of detection of a low-copy-number target gene in PCR using these DNA polymerases. 相似文献
14.
Aptamers are functional nucleic acids possessing high affinity and specificity to their cognate ligands and are isolated from a library of nucleic acids by iterative rounds of selection and amplification. In the current study, we used surface plasmon resonance (Biacore) as an efficient methodology for selecting aptamers that bind to hemagglutinin (HA) of human influenza virus. This procedure allowed us to monitor and select the target-bound aptamers specifically and simultaneously. These studies not only yielded an aptamer that binds to the HA of influenza virus with high affinity but also revealed the consensus sequence, 5'-GUCGNCNU(N)(2-3)GUA-3, for HA recognition. 相似文献
15.
Moreno M Rincón E Piñeiro D Fernández G Domingo A Jiménez-Ruíz A Salinas M González VM 《Biochemical and biophysical research communications》2003,308(2):214-218
SELEX procedure is a methodology in which single stranded oligonucleotides are selected from a wide variety of sequences based on their interaction with a target molecule. We have designed a novel SELEX methodology using colloidal gold to select high affinity single stranded DNA aptamers against Leishmania infantum KMP-11. Kinetoplastid membrane protein-11 (KMP-11) is a major component of the cell membrane of kinetoplastid parasites. Although its function is not known, the fact that KMP-11 is a cytoskeleton-associated protein suggests that it may be involved in mobility or in some other aspects of the flagellar structure. We have isolated a single stranded DNA aptamer population that binds specifically to L. infantum KMP-11. This population has been characterized in a series of in vitro experiments suggesting that it may be used as a powerful tool to further investigate the role of KMP-11 during Leishmania development and/or as a diagnostic tool in Leishmania infection. 相似文献
16.
17.
18.
Selection of aptamers against inactive Vibrio alginolyticus and application in a qualitative detection assay 总被引:1,自引:0,他引:1
Aptamers against inactive Vibrio alginolyticus were selected from an 82-nt ssDNA random library by systematic evolution of ligands by exponential enrichment. After 15 rounds of selection, the final pool of aptamers was highly specific for inactivated V. alginolyticus and had a dissociation constant of 27.5 ± 9.2 nM. Using these aptamers and PCR, V. alginolyticus could be detected at 100 cells/ml. Sequencing of the final pool of aptamers revealed that some sequences, termed high-frequency aptamers, appeared more than once; these may be of practical application. All sequences obtained were divided into nine families according to their homology tree, some conserved sequences were also found in each of the six families. One sequence was found in significant proportions of the aptamers, suggesting that this conserved sequence might be important for forming the three-dimensional aptamer structure. 相似文献
19.
S. Malhotra A. K. Pandey Y. S. Rajput R. Sharma 《Journal of molecular recognition : JMR》2014,27(8):493-500
In the present work, aptamers against aflatoxin M1 and aflatoxin B1 were generated and tested for creating proof of principle of recognition of aflatoxin M1 by generated aptamers. The aptamers were selected through the process referred as systematic evolution of ligands by exponential enrichment. A total of 41 different aptamer (36 aptamers for aflatoxin M1 and 5 for aflatoxin B1) sequences were obtained. The determination of dissociation constant (Kd) values revealed that aptamers generated against aflatoxin M1 exhibited Kd values in the range of 35–1515 nM. Selected aptamers were grouped on the basis of the presence of common motifs or G‐quadruplex. We find it interesting that one aptamer with no conserved motif or G‐quadruplex had lowest Kd value (Kd = 35 nM). This structural motif is very distinct from motifs present in other aptamers. The Kd values of selected aptamers for aflatoxin B1 were in the range of 96–221 nM. One aptamer from each group was further tested for its ability to be used in aptasensor. The aptamer recognized aflatoxin M1 as indicated by color change (red to purple or blue) of aptamer‐coated gold nanoparticles in the presence of 250–500 nM aflatoxin M1. The aptamers can be used in developing methods for detection/estimation/separation of aflatoxin or antidote for aflatoxin toxicity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
A. M. Chumakov E. S. Yuhina E. I. Frolova J. E. Kravchenko S. P. Chumakov 《Russian Journal of Bioorganic Chemistry》2016,42(1):1-13
Side-by-side development of two competing technologies for obtaining affinity antibody-based and aptamer-based molecules opens new horizons for the creation of diagnostic and therapeutic agents of extremely high efficiency. Benefits of aptamers, such as relatively small size and selection simplicity, have been jeopardized for a long time by their intrinsic downsides, i.e., obscure process of obtaining aptamers against certain targets because of a low diversity of functional groups (purine and pyrimidine bases) in DNA and RNA aptamers. Another side effect of the aptamer technique inherent to the traditional SELEX method is unspecific enrichment with aptamers with high affinity to off-target reaction components. Today, due to current progress in the development of new technology methods and chemical coupling reactions, the modern aptamer technology helps to avoid its disadvantages and become capable of being the source of new diagnostic and therapeutic tools, which are properly unique in their efficiency. The review focuses on modern methods of increasing efficiency of the aptamer selection and on synthetic nucleotide modifications, which make it possible to prepare high-affinity aptamers against traditionally ‘hard’ targets. 相似文献