首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-fertilization is a key difference of adaptive significance between species with combined versus separate sexes. In haploid-dominant species such as mosses and ferns, species with either combined or separate sexes (monoicous and dioicous, respectively) have the potential to self-fertilize (intergametophytic selfing), but being monoicous allows an additional mode of selfing (intragametophytic selfing). We used allozyme electrophoresis to estimate deviations from expected levels of heterozygosity under Hardy-Weinberg equilibrium to infer selfing rates in 10 moss species from 36 New Zealand populations. We found that while there were deficiencies of heterozygotes compared to expectation in both monoicous and dioicous mosses, monoicous species had significantly higher levels of heterozygote deficiency than dioicous species (F(IS)=0.89+/-0.12 and 0.41+/-0.11, respectively). Estimated selfing rates suggest that selfing occurs frequently in monoicous populations, and rarely in dioicous populations. However, in two dioicous species (Polytrichadelphus magellanicus and Breutelia pendula), we found significant indications of mixed mating or biparental inbreeding in a handful of populations. These data provide the first analysis of heterozygote deficiency and selfing among haploid-dominant species with breeding system variation, and we discuss our results with respect to the consequences of inbreeding depression and the evolution of breeding systems.  相似文献   

2.
Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.  相似文献   

3.
Inbreeding depression is known to vary greatly between populations and among species. Some of this variation is due to differences in genetic load between populations, while some is due to differences in the environment (e.g. local weather conditions) or demography of the population (e.g. age structure and breeding experience) in which inbreeding is expressed. Although the effects of these factors in isolation are well understood, there is still relatively little known about the interface between inbreeding on one hand, and environment and demography on the other in wild populations. We examined how environmental and demographic factors mediated the effects of inbreeding in a threatened species of bird. The Stewart Island robin, Petroica australis rakiura, has been subjected to a prolonged bottleneck for over 150 years. A complete pedigree of a reintroduced island population, extending back seven seasons to its founding, was available for analysis along with survival data (at the level of the brood) obtained from intensive monitoring over two breeding seasons. We found no strong support that the degree to which a brood was inbred affected its survival at either the hatching, fledging or recruitment stages. The inbreeding coefficient of the mother did have an effect on brood survival when analysed over all three life history stages, but only as a result of an interaction with female age, with broods of one‐year‐old inbred females suffering greater mortality than those of older inbred females. Although habitat type, temperature, rainfall and year were the best predictors of brood survival for most life history stages, their effects were weak and there were no interactions with inbreeding. Furthermore, there was no strong evidence of inbreeding depression associated with two periods of severe weather. This population is atypical in that inbreeding depression appears to be weak even under severe environmental conditions, and may be indicative that this bottlenecked population has either reduced genetic load or has fixed deleterious alleles.  相似文献   

4.
Strong pair bonds generally increase fitness in monogamous organisms, but may also underlie the risk of hampering it when re-pairing fails after the winter season. We investigated whether partners would either maintain contact or offset this risk by exploiting sex-specific favourable niches during winter in a migratory monogamous seabird, the southern rockhopper penguin Eudyptes chrysocome. Using light-based geolocation, we show that although the spatial distribution of both sexes largely overlapped, pair-wise mates were located on average 595 ± 260 km (and up to 2500 km) apart during winter. Stable isotope data also indicated a marked overlap between sex-specific isotopic niches (δ13C and δ15N values) but a segregation of the feeding habitats (δ13C values) within pairs. Importantly, the tracked females remained longer (12 days) at sea than males, but all re-mated with their previous partners after winter. Our study provides multiple evidence that migratory species may well demonstrate pair-wise segregation even in the absence of sex-specific winter niches (spatial and isotopic). We suggest that dispersive migration patterns with sex-biased timings may be a sufficient proximal cause for generating such a situation in migratory animals.  相似文献   

5.
6.
It is often assumed that mating with close relatives reduces offspring fitness. In such cases, reduced offspring fitness may arise from inbreeding depression (i.e., genetic effects of elevated homozygosity) or from post‐mating maternal investment. This can be due to a reduction in female investment after mating with genetically incompatible males (“differential allocation”) or compensation for incompatibility (“reproductive compensation”). Here, we looked at the effects of mating with relatives on offspring fitness in mosquitofish, Gambusia holbrooki. In this species, females are assumed to be nonplacental and to allocate resources to eggs before fertilization, limiting differential allocation. We looked at the effects of mating with a brother or with an unrelated male on brood size, offspring size, gestation period, and early offspring growth. Mating with a relative reduced the number of offspring at birth, but there was no difference in the likelihood of breeding, gestation time, nor in the size or growth of these offspring. We suggest that due to limited potential for maternal effects to influence these traits that any reduction in offspring fitness, or lack thereof, can be explained by inbreeding depression rather than by maternal effects. We highlight the importance of considering the potential role of maternal effects when studying inbreeding depression and encourage further studies in other Poeciliid species with different degrees of placentation to test whether maternal effects mask or amplify any genetic effects of mating with relatives.  相似文献   

7.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

8.
The ability to self in the absence of pollinators, i.e. reproductive assurance, and the detrimental consequences of inbreeding, i.e. inbreeding depression, are central factors influencing plant mating system evolution. The purpose of this study was to quantify whether self-fertility and inbreeding depression are related to levels of inbreeding in four Cyclamen species, namely C. balearicum (mean Fis = 0.930), C. creticum (mean Fis = 0.748), C. repandum (mean Fis = 0.658) and C. hederifolium (mean Fis = 0.329). C. balearicum showed a markedly greater capacity to autonomously self-fertilize than the three other species, which may have favoured inbreeding in this species. Levels of inbreeding depression were highest in C. creticum and C. hederifolium at the fruit maturation (δ = 0.18 and 0.20, respectively) and seed number (δ = 0.32 and 0.30, respectively) stages, and for C. repandum at the seed weight stage (δ = 0.23). Although C. balearicum showed inbreeding depression on seed germination (δ = 0.45), this may be an artefact of the generally low levels of seed germination in the experiment. Overall, we observed only limited evidence for the predicted negative relation between inbreeding coefficients and levels of inbreeding since C. creticum had high levels of inbreeding and inbreeding depression. Other factors may thus influence the relationship between inbreeding and inbreeding depression in these species.  相似文献   

9.
10.
In nonpedigreed wild populations, inbreeding depression is often quantified through the use of heterozygosity-fitness correlations (HFCs), based on molecular estimates of relatedness. Although such correlations are typically interpreted as evidence of inbreeding depression, by assuming that the marker heterozygosity is a proxy for genome-wide heterozygosity, theory predicts that these relationships should be difficult to detect. Until now, the vast majority of empirical research in this area has been performed on generally outbred, nonbottlenecked populations, but differences in population genetic processes may limit extrapolation of results to threatened populations. Here, we present an analysis of HFCs, and their implications for the interpretation of inbreeding, in a free-ranging pedigreed population of a bottlenecked species: the endangered takahe (Porphyrio hochstetteri). Pedigree-based inbreeding depression has already been detected in this species. Using 23 microsatellite loci, we observed only weak evidence of the expected relationship between multilocus heterozygosity and fitness at individual life-history stages (such as survival to hatching and fledging), and parameter estimates were imprecise (had high error). Furthermore, our molecular data set could not accurately predict the inbreeding status of individuals (as 'inbred' or 'outbred', determined from pedigrees), nor could we show that the observed HFCs were the result of genome-wide identity disequilibrium. These results may be attributed to high variance in heterozygosity within inbreeding classes. This study is an empirical example from a free-ranging endangered species, suggesting that even relatively large numbers (>20) of microsatellites may give poor precision for estimating individual genome-wide heterozygosity. We argue that pedigree methods remain the most effective method of quantifying inbreeding in wild populations, particularly those that have gone through severe bottlenecks.  相似文献   

11.
Inbreeding is typically detrimental to fitness. However, some animal populations are reported to inbreed without incurring inbreeding depression, ostensibly due to past "purging" of deleterious alleles. Challenging this is the position that purging can, at best, only adapt a population to a particular environment; novel selective regimes will always uncover additional inbreeding load. We consider this in a prominent test case: the eusocial naked mole-rat (Heterocephalus glaber), one of the most inbred of all free-living mammals. We investigated factors affecting mortality in a population of naked mole-rats struck by a spontaneous, lethal coronavirus outbreak. In a multivariate model, inbreeding coefficient strongly predicted mortality, with closely inbred mole-rats (F> or = 0.25) over 300% more likely to die than their outbred counterparts. We demonstrate that, contrary to common assertions, strong inbreeding depression is evident in this species. Our results suggest that loss of genetic diversity through inbreeding may render populations vulnerable to local extinction from emerging infectious diseases even when other inbreeding depression symptoms are absent.  相似文献   

12.
Genetic effects are often overlooked in endangered species monitoring, and populations showing positive growth are often assumed to be secure. However, the continued reproductive success of a few individuals may mask issues such as inbreeding depression, especially in long‐lived species. Here, we test for inbreeding depression in little spotted kiwi (Apteryx owenii) by comparing a population founded with two birds to one founded with 40 birds, both from the same source population and both showing positive population growth. We used a combination of microsatellite genotypes, nest observations and modelling to examine the consequences of assessing population viability exclusively via population growth. We demonstrate (i) significantly lower hatching success despite significantly higher reproductive effort in the population with two founders; (ii) positive growth in the population with two founders is mainly driven by ongoing chick production of the founding pair; and (iii) a substantial genetic load in the population founded with two birds (10–15 diploid lethal equivalents). Our results illustrate that substantial, cryptic inbreeding depression may still be present when a population is growing, especially in long‐lived species with overlapping generations.  相似文献   

13.
Many orchids produce no nectar rewards. Foraging pollinators should visit more flowers per inflorescence in species with nectar, which could increase geitonogamous self-fertilization. If a history of selfing decreases genetic load, then nectar-producing orchids should harbour lower inbreeding depression than nectarless species. Here, I tested this hypothesis by quantifying inbreeding depression and pollinator limitation in populations of three closely related orchid species, one of which provides nectar. I also compared inbreeding depression for nectarless and nectar-producing species of orchids using published studies. All field populations expressed pollinator limitation, but the nectar-providing species was intermediate to the two nectarless species. All populations expressed inbreeding depression, and levels increased in later life-history stages. There was no tendency for nectarless species to express higher inbreeding depression either in experiments or published studies. Nectarless orchids may not express higher levels of inbreeding depression because pollinators fail to visit more flowers in nectar-bearing species, because such visitations do not result in greater selfing, and/or because higher selfing may be ineffective in purging the mutations that cause load.  相似文献   

14.
Which conditions favour the evolution of hermaphroditism or separate sexes? One classical hypothesis states that an organism’s mode of locomotion (if any) when searching for a mate should influence breeding system evolution. We used published phylogenies to reconstruct evolutionary changes in adult mate‐search efficiency and breeding systems among multicellular organisms. Employing maximum‐likelihood analyses, we found that changes in adult mate‐search efficiency are significantly correlated with changes in breeding system, and this result is robust to uncertainties in the phylogenies. These data provide the first statistical support, across a broad range of taxa, for the hypothesis that breeding systems and mate‐search efficiency did not evolve independently. We discuss our results in context with other causal factors, such as inbreeding avoidance and sexual specialization, likely to affect breeding system evolution.  相似文献   

15.
Opuntia robusta has hermaphroditic, dioecious, and trioecious populations. To enhance our understanding of this breeding system diversity, we compared the reproductive output of males, females, and hermaphrodites in a trioecious population using field evaluations, controlled crosses, and progeny tests. Unisexuals were fully sterile in one sex function. Hermaphrodites were fully fertile for both functions. Consistent with the sex-allocation theory, unisexuality increased the quality and quantity (in males) of the gametes of the functional sex, relative to those of hermaphrodites, probably explained by maternal and paternal effects. The increase was higher in males than in females, suggesting a more expensive female function. Theoretically, this disproportional increase is required for unisexuals to invade a hermaphroditic population with prior selfing, negligible pollen discounting, and undetectable inbreeding depression, features found in O. robusta, therefore helping to explain dioecious populations. However, in the study population, the actual seed output of females was lower and had a higher variance than that of hermaphrodites, which also reproduce through pollen. Unisexuals are unlikely to be maintained by their actual reproductive output in this pollen-limited environment. Hermaphrodites may persist in this population by producing their seeds autonomously and by reducing interspecific fertilization by prior selfing and ovule discounting.  相似文献   

16.
Clonality is often implicated in models of the evolution of dioecy, but few studies have explicitly compared clonal structure between plant sexual systems, or between the sexes in dioecious populations. Here, we exploit the occurrence of monoecy and dioecy in clonal Sagittaria latifola (Alismataceae) to evaluate two main hypotheses: (i) clone sizes are smaller in monoecious than dioecious populations, because of constraints imposed on clone size by costs associated with geitonogamy; (ii) in dioecious populations, male clones are larger and flower more often than female clones because of sex‐differential reproductive costs. Differences in clone size and flowering could result in discordance between ramet‐ and genet‐based sex ratios. We used spatially explicit sampling to address these hypotheses in 10 monoecious and 11 dioecious populations of S. latifolia at the northern range limit in Eastern North America. In contrast to our predictions, monoecious clones were significantly larger than dioecious clones, probably due to their higher rates of vegetative growth and corm production, and in dioecious populations, there was no difference in clone size between females and males; ramet‐ and genet‐based sex ratios were therefore highly correlated. Genotypic diversity declined with latitude for both sexual systems, but monoecious populations exhibited lower genotypic richness. Differences in life history between the sexual systems of S. latifolia appear to be the most important determinants of clonal structure and diversity.  相似文献   

17.
Greenhouse pollinations were performed to determine whether early-acting inbreeding depression is contributing to low levels of self-fertility in three Vaccinium species: V. myrtilloides Michaux, V. angustifolium Aiton, and V. corymbosum L. All three species showed a significant reduction in self fruit set and in the proportion of fertilized ovules that developed into mature seed in self compared to outcross fruit. Reductions were more severe in V. myrtilloides and V. angustifolium than in V. corymbosum; however, early-acting inbreeding depression appeared to be the primary factor limiting self-fertility in all three species. Evidence for early- acting inbreeding depression included the presence and higher proportion of aborted ovules in self fruit than in outcross fruit, a correlation between levels of self and outcross seed set, and pollen chase experiments demonstrating that self-pollen does fertilize the ovules. Self-fertility in the three species was probably influenced by levels of genetic load, ploidy level and outcrossing rates. Received: 10 December 1999 / Revision accepted: 20 June 2000  相似文献   

18.
Various methods have been proposed to estimate inbreeding depression and to assess its consequences for natural populations. As an alternative to controlled crosses, the use of molecular markers has allowed direct investigation of inbreeding depression in natural populations, but usually suffers from low statistical power. Here, we investigated the effect of inbreeding depression on survival in two populations of the rare species Brassica insularis, using both controlled crosses and a marker-based approach. We compare the respective merits of the two approaches for studying inbreeding depression. We also use information from the molecular markers to dissect in detail patterns of inbreeding depression in this species. A posteriori, we find that combining the approaches was not necessary to obtain simple point estimates of inbreeding depression. However, using molecular markers may give insight into the genetic basis of inbreeding depression, such as the occurrence of epistatic interactions among deleterious alleles or purging.  相似文献   

19.
The deleterious effects of inbreeding have long been known, and inbreeding can increase the risk of extinction for local populations in metapopulations. However, other consequences of inbreeding in metapopulations are still not well understood. Here we show the presence of strong inbreeding depression in a rockpool metapopulation of the planktonic freshwater crustacean Daphnia magna, which reproduces by cyclical parthenogenesis. We conducted three experiments in real and artificial rockpools to quantify components of inbreeding depression in the presence and the absence of competition between clonal lines of selfed and outcrossed genotypes. In replicated asexual populations, we recorded strong selection against clones produced by selfing in competition with clones produced by outcrossing. In contrast, inbreeding depression was much weaker in single-clone populations, that is, in the absence of competition between inbred and outbred clones. The finding of a competitive advantage of the outbred genotypes in this metapopulation suggests that if rockpool populations are inbred, hybrid offspring resulting from crosses between immigrants and local genotypes might have a strong selective advantage. This would increase the effective gene flow in the metapopulation. However, the finding of low inbreeding depression in the monoclonal populations suggests that inbred and outbred genotypes might have about equal chances of establishing new populations.  相似文献   

20.
Inbreeding can lead to the expression of deleterious recessive alleles and to a subsequent fitness reduction. In Hymenoptera, deleterious alleles are purged in haploid males moderating inbreeding costs. However, in these haplodiploid species, inbreeding can result in the production of sterile diploid males. We investigated the effects of inbreeding on the individual and colony level in field colonies of the highly inbred ant Hypoponera opacior. In this species, outbreeding winged sexuals and nest‐mating wingless sexuals mate during two separate reproductive periods. We show that regular sib‐matings lead to high levels of homozygosity and the occasional production of diploid males, which sporadically sire triploid offspring. On the individual level, inbreeding was associated with an increased body size in workers. On the colony level, we found no evidence for inbreeding depression as productivity was unaffected by the level of homozygosity. Instead, inbred colonies altered their allocation strategies by investing more resources into sexuals than into workers. This shift towards sexual production was due to an increased investment in both males and queens, which was particularly pronounced in the dispersive generation. The absence of inbreeding depression combined with increased reproductive investment, especially in outbreeding sexuals, suggests that these ants have evolved active strategies to regulate the extent and effects of frequent inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号