首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Size changes in brain and brain regions along altitudinal gradients provide insight into the trade‐off between energetic expenditure and cognitive capacity. We investigated the brain size variations of the Asiatic Toad (Bufo gargarizans) across altitudes from 700 m to 3,200 m. A total of 325 individuals from 11 sites and two transects were sampled. To reduce confounding factors, all sampling sites within each transect were within a maximum distance of 85 km and an altitudinal difference close to 2,000 m. Brains were dissected, and five regions were both measured directly and with 3D CT scan. There is a significant negative correlation between the relative whole‐brain volume (to snout‐vent length) and altitude. Furthermore, the relative volumes (to whole‐brain volume) of optic tectum and cerebellum also decrease along the altitudinal gradients, while the telencephalon increases its relative volume along the gradients. Therefore, our results are mostly consistent with the expensive brain hypothesis and the functional constraint hypothesis. We suggest that most current hypotheses are not mutually exclusive and data supporting one hypothesis are often partially consistent with others. More studies on mechanisms are needed to explain the brain size evolution in natural populations.  相似文献   

3.
In this study, soil bacterial communities and the temperature responses (Q10) of substrate-induced respiration were compared between an alpine dry meadow and a subalpine forest in the Colorado Rocky Mountains. Bacterial communities in three seasons from each environment were described with 16S rRNA gene clone libraries. The main goal of this comparison was to relate phylogenetic differences among bacterial communities with variation in soil respiratory temperature sensitivities along seasonal and altitudinal gradients. The warmer, lower elevation, subalpine forest soil exhibited large seasonal variations in Q10. Subalpine Q10 values were highest in summer, and were higher than alpine values in all seasons except winter. Q10 in alpine soils were consistently low throughout the year. Alpine and subalpine bacterial communities both varied seasonally, and were markedly distinct from each other. Based on Fst analysis, subalpine communities from colder times of year were more similar to the alpine communities than were subalpine summer communities. Principle component analysis of the pairwise genetic distances (Fst) between communities produced two factors that accounted for 69% and 22% of the total variance in the data set. These factors demonstrated a significant relationship between bacterial community structure and temperature response when regressed on log-transformed Q10 data.  相似文献   

4.
We investigated patterns of flower‐size variation along altitudinal gradients in the bee‐pollinated perennial Campanula rotundifolia (Campanulaceae) by examining 22 Norwegian populations at altitudes between 240 and 1100 m a.s.l. We explored potential mechanisms for the underlying pattern by quantifying pollinator–faunal composition, pollinator‐visitation rates and pollen limitation of seed set in subsets of the study populations. Despite a decrease in plant size, several measures of flower size increased with elevation. Bumble bees were the main pollinators at both alpine and lowland sites in the study area. However, species composition of the pollinator fauna differed, and pollinators were larger in higher‐elevation than in lower‐elevation sites. Pollinator visitation rates were lower at higher‐elevations than at lower elevations. Pollen limitation of seed set did not vary significantly with altitude. Our results are consistent with differences in bumble‐bee size and visitation rates as causal mechanisms for the relatively larger flowers at higher elevations, in three non‐mutually exclusive ways: 1) Larger flowers reflect selection for increased attractiveness where pollinators are rare. 2) Larger and fewer flowers represent a risk avoidance strategy where the probability of pollination is low on any given day. 3) Flower size variation reflects selection to improve the fit of pollinators with fertile structures by matching flower size to pollinator size across sites.  相似文献   

5.
Elevation has long been considered a major influence on the evolution of life-history traits. Most elevation-induced variation in life history traits has been attributed to changes in climate, duration of breeding season, predation, and food limitation. I use a phylogenetic approach to show that life histories are closely associated with breeding elevation in extant cardueline finches. Finches at high elevations had smaller clutches, fewer broods, and longer incubation periods. Neither food limitation nor nest predation appear to readily account for this strong elevational variation in cardueline life histories. However, juvenile survival may be greater at higher elevations as a result of prolonged parental care and shorter natal dispersal and can potentially compensate for reduced fecundity in high-elevation finches. Received: 28 September 1996 / Accepted: 24 March 1997  相似文献   

6.
中华山蓼不同海拔居群的繁殖分配研究   总被引:5,自引:0,他引:5  
研究了具有克隆繁殖和雌雄异株繁育特性的中华山蓼Oxyria sinensis Hemsl.在5个不同海拔居群的繁殖分配.结果表明:(1)雄株高度和茎叶总生物量仪在海拔2780 m的居群显著高于雌株,在另外4个居群与雌株高度和茎叶总生物量均不存在显著差异:雄株地上部分总生物量在海拔较高的3个届群显著高于雌株的地上部分总生物量;雄株的花生物量和繁殖分配在海拔1978 m的居群与雌株没有显著差异,但在另外4个居群均显著高于雌株,表明在海拔较高的地区,中华山蓼增加了对雄性植株的资源配置,可能是对海拔较高地区不可预见性降雨和降低昆虫访花频率的适应.(2)雌雄株高度、地上部分总生物量和茎叶生物量以及雌株的花生物量和繁殖分配随海拔升高表现出降低的趋势,但雄花的生物量和繁殖分配随海拔升高显著增加,进一步证明中华山蓼在海拔较高地区的居群增加了对雄性资源的投资.(3)雄雌株繁殖分配受个体大小制约(个体大小依赖性),但并不支持"植物开始繁殖必须达到一定的大小(阈值)"的观点.这可能因为中华山蓼具有较强的无性繁殖能力,而同一植株上不同分株间能通过地下根状茎达到资源共享,因此中华山蓼分株的开花繁殖不需要达到一定的大小.  相似文献   

7.
Aim This study assessed changes in diversity and assemblage composition in bryophytes and their associated invertebrates along altitudinal gradients in Australia and New Zealand. The importance of altitude in shaping these communities and for the diversity of both invertebrates and bryophytes was examined at different spatial scales, including local, altitudinal, regional and biogeographical. Location Samples were taken from four Australasian mountain ranges between 42° and 43°S: Mt Field and Mt Rufus, Tasmania, Australia, and Otira Valley and Seaward Kaikoura Mountains, South Island, New Zealand. Methods On both Tasmanian mountains, five altitudes were assessed (250, 500, 750, 1000 and 1250 m). At each location (mountain/altitude combination) two sites were chosen and six samples were taken. Six altitudes were assessed on New Zealand mountains (Otira: 250, 500, 750, 1000, 1250 and 1500 m; Kaikoura: 1130, 1225, 1325, 1425, 1525 and 2000 m). Bryophyte substrate was collected, and all samples were stored in 70% ethanol. Invertebrates were extracted from bryophytes using kerosene‐phase separation and all invertebrates were identified to family. At each location in Tasmania, all bryophyte species within six 25‐cm2 grids per site were collected and identified to species. Bryophytes from New Zealand were identified to species from the invertebrate sample substrate because of sampling constraints. Results Altitude did have a significant effect on diversity, however, no general trend was found along the altitudinal gradient on the four mountains. There were distinct differences in diversity between biogeographical regions, mountains, altitudes and sites. In Tasmania, Mt Field had the highest diversity in invertebrates and bryophytes at 750 m. In contrast, Mt Rufus had consistent low invertebrate and bryophyte diversity along the entire altitudinal gradient. There were also distinctive differences between locations in the composition of invertebrate and bryophyte communities in Tasmania. Along the two altitudinal gradients in New Zealand, Otira had highest diversity for both invertebrates and bryophytes at low altitudes, whereas Kaikoura had highest invertebrate and lowest bryophyte diversity at the highest altitude. Main conclusions There was an effect of altitude, however, there were no consistent changes in diversity or composition on the four different mountains. There was considerable local and regional variation, and, despite a strong sampling design, no underlying altitudinal trends were detectable. This study demonstrates the importance of examining a range of spatial scales if patterns in community structure along altitudinal gradients are to be studied. The implications of this study are discussed with reference to survey design, taxonomic resolution, climate change and conservation of habitat.  相似文献   

8.
We investigated phenotypic variation in 15 traits in greenhouse-grown plants from 16 populations of Clarkia unguiculata from three elevational habitats and six latitudinal transects. Populations from the lowest and highest elevations were geographically and ecologically marginal within the species' range. We (1) describe patterns of trait variation with elevation and latitude; (2) compare latitutidinal variation between marginal and central areas of the species' range; and (3) compare patterns of variation within C. unguiculata to interspecific patterns within the genus. Although there was some evidence that traits varied clinally (i.e., increased/decreased monotonically) along environmental gradients, interaction effects between altitude and latitude dominated patterns of variation. For most traits, latitudinal trends at the low-elevation margin of the species' range differed from trends at mid- and high-elevation areas. Based on interspecific comparisons, populations at the hotter, more arid ends of both environmental gradients were expected to have rapid development, small flowers and vegetative size, low levels of herkogamy and protandry, and high rates of gas exchange. Instead, we found that while some traits were correlated with one gradient in the expected way (e.g., development time with elevation, gas-exchange physiology with latitude), all traits were not consistently associated with each other along both gradients, and intraspecific patterns of variation differed from interspecific patterns.  相似文献   

9.
Elevational gradients provide powerful natural systems for testing hypotheses regarding the role of environmental variation in the evolution of life‐history strategies. Case studies have revealed shifts towards slower life histories in organisms living at high elevations yet no synthetic analyses exist of elevational variation in life‐history traits for major vertebrate clades. We examined (i) how life‐history traits change with elevation in paired populations of bird species worldwide, and (ii) which biotic and abiotic factors drive elevational shifts in life history. Using three analytical methods, we found that fecundity declined at higher elevations due to smaller clutches and fewer reproductive attempts per year. By contrast, elevational differences in traits associated with parental investment or survival varied among studies. High‐elevation populations had shorter and later breeding seasons, but longer developmental periods implying that temporal constraints contribute to reduced fecundity. Analyses of clutch size data, the trait for which we had the largest number of population comparisons, indicated no evidence that phylogenetic history constrained species‐level plasticity in trait variation associated with elevational gradients. The magnitude of elevational shifts in life‐history traits were largely unrelated to geographic (altitude, latitude), intrinsic (body mass, migratory status), or habitat covariates. Meta‐population structure, methodological issues associated with estimating survival, or processes shaping range boundaries could potentially explain the nature of elevational shifts in life‐history traits evident in this data set. We identify a new risk factor for montane populations in changing climates: low fecundity will result in lower reproductive potential to recover from perturbations, especially as fewer than half of the species experienced higher survival at higher elevations.  相似文献   

10.
Although hybridization frequently occurs among plant species, hybrid zones of divergent lineages formed at species boundaries are less common and may not be apparent in later generations of hybrids with more parental‐like phenotypes, as a consequence of backcrossing. To determine the effects of dispersal and selection on species boundaries, we compared clines in leaf traits and molecular hybrid index along two hybrid zones on Yakushima Island, Japan, in which a temperate (Rubus palmatus) and subtropical (Rubus grayanus) species of wild raspberry are found. Leaf sinus depth in the two hybrid zones had narrower clines at 600 m a.s.l. than the molecular hybrid index and common garden tests confirmed that some leaf traits, including leaf sinus depth that is a major trait used in species identification, are genetically divergent between these closely related species. The sharp transition in leaf phenotypic traits compared to molecular markers indicated divergent selection pressure on the hybrid zone structure. We suggest that species boundaries based on neutral molecular data may differ from those based on observed morphological traits.  相似文献   

11.
Species with a wide geographical distribution are often composed of distinct subgroups which may be adapted to their local environment. European trout (Salmo trutta species complex) provide an example of such a complex consisting of several genetically and ecologically distinct forms. However, trout populations are strongly influenced by human activities, and it is unclear to what extent neutral and adaptive genetic differences have persisted. We sampled 30 Swiss trout populations from heterogeneous environments along replicated altitudinal gradients in three major European drainages. More than 850 individuals were genotyped at 18 microsatellite loci which included loci diagnostic for evolutionary lineages and candidate markers associated with temperature tolerance, reproductive timing and immune defence. We find that the phylogeographic structure of Swiss trout populations has not been completely erased by stocking. Distinct genetic clusters corresponding to the different drainages could be identified, although nonindigenous alleles were clearly present, especially in the two Mediterranean drainages. We also still detected neutral genetic differentiation within rivers which was often associated with the geographical distance between populations. Five loci showed evidence of divergent selection between populations with several drainage-specific patterns. Lineage-diagnostic markers, a marker linked to a quantitative trait locus for upper temperature tolerance in other salmonids and a marker linked to the major histocompatibility class I gene were implicated in local adaptation and some patterns were associated with altitude. In contrast, tentative evidence suggests a signal of balancing selection at a second immune relevant gene (TAP2). Our results confirm the persistence of both neutral and potentially adaptive genetic differences between trout populations in the face of massive human-mediated dispersal.  相似文献   

12.
Variations in tree architecture and in the genetic structure of Larix kaempferi on Mt. Fuji were surveyed along altitudinal gradients using 11 nSSR loci. In total, 249 individuals from six populations along three trails at altitudes ranging from approximately 1,300 to 2,700 m were investigated. Gradual changes in tree architecture with increasing elevation, from erect trees to flag trees and krummholz mats, were observed in the high-altitude populations (>2,000 m) on all trails. These findings suggest that tree architecture is correlated with the severe environmental conditions associated with increasing elevation, such as strong winds. In contrast to obvious variations in tree architecture, the genetic diversity of populations along the trails was almost uniform (H E = 0.717–0.762) across the altitudinal range. The results of the AMOVA and STRUCTURE analyses, and the analysis for isolation by distance pattern, suggest homogeneous genetic structuring across all populations on Mt. Fuji, while the pairwise F ST showed barriers to gene flow between altitudinal populations that were demarcated as high- or low-altitude populations by Abies-Tsuga forest. Although the evergreen coniferous forests on the mountainside may hinder gene flow, this may be explained by the long-distance seed dispersal of the Japanese larch and/or a short population history resulting from eruptions or slush avalanches, although evergreen coniferous forests on the mountainside may hinder gene flow.  相似文献   

13.
14.
The performance of the ferns Thelypteris limbospgrma and Athyrium distentifolium , as expressed by number of son on pinnules and frond size, has been related to environmental gradients. Data have been collected from homogenous fern-dominated stands from different geographical areas in Western Norway. Number of sori produced, which was assumed to indicate fern fertility, was highly variable. There were significant correlations between frond size and fertility, but only 35–46 % of the variation in fertility could be explained by differences in frond size. The highest number of sori was found on plants of medium size, and for A. distentifolium there was a statistically significant reduction in sori number on fronds taller than 125 cm. For the linear relationships between fertility and size, it is suggested that the small X-intercept and slope defines the high competitive ability of A. distentifolium in sites with a long-lasting snow cover. The ferns may dominate in large stands even though their fertility is low or zero, which indicates that they under certain ecological conditions mainly reproduce vegetatively. Both ferns show decreased fertility both toward their altitudinal and lowland distribution limits, but their fertility optima were different. The performances of the two fern species showed highly different responses to geographical and climatical variables. The fertility of T. limbosperma could be predicted by mean July- and January temperatures, humidity and canopy cover, while the fertility of A. distentifolium could not be predicted by any of the site environmental variables investigated.  相似文献   

15.
Vascular plant species richness is known to often decrease with both increasing latitude and increasing altitude. However, a number of studies have shown the reverse trend and the primary cause of these gradients remains unknown. In the present work, generalized linear models were used to assess the relative importance of latitude and altitude as well as of a number of other factors (mean annual precipita-tion, slope, substrate and forest type) on species richness in temperate rainforests of New Zealand. The effect of Southern beech ( Nothofagus spp.) as dominant canopy species on total species richness was shown to be much smaller than postulated in most previous studies. Within the region studied, altitude had by far the strongest effect on species richness. This effect was independent of latitude and was significant for woody but not for herbaceous vegetation.  相似文献   

16.
Ectothermy in reptiles involves strong environmental temperature dependence to maintain body temperature. High mountains are extreme habitats which, because of their marked temperature decrease with altitude, impose difficulties for reptile thermoregulation, as the number of optimum-temperature days diminish in altitude. We studied the activity patterns of the lizard Psammodromus algirus, which has a wide altitudinal distribution, at six sampling stations that spanned an altitudinal range from 300 to 2500 m asl in Sierra Nevada (SE Iberian Peninsula). We performed censuses of the species during the seasonal and daily activity period, and measured lizard body temperature and environmental temperature in the six sampling plots along the altitude gradient. The body temperature of the lizards remained closely the same even though environmental temperature decreased around 9°C along that gradient. Seasonal activity peaked at the beginning of the activity period in highlands, but in the middle of the season in middle and lowland regions. However, newborns appeared in the field almost at the same time along the altitude gradient. We suggest that the thermoregulatory strategies of the lizards must vary along this altitudinal gradient, permitting lizards to keep their body temperature close to a very similar optimum and thus, develop very similar circa-annual activity patterns.  相似文献   

17.
N and P concentrations and their ratios were determined for 132 foliar and 120 below-ground biomass (BGB) samples obtained at 132 sites along the 4500 km Chinese Grassland Transect (CGT) across the Inner Mongolian and Qinghai–Tibet Plateaus. Patterns of foliar and BGB N, P and their ratio (N/P) at the community level were related to altitude, temperature, and precipitation gradients. Also, patterns of relative N and P foliar and BGB concentrations were determined (NF/B, foliar N/BGB N; PF/B, foliar P/BGB P). The relationship between foliar N concentrations and mean annual temperature (MAT) was negative, agreeing with the Temperature-Plant Physiological hypothesis, whereas BGB N decreased with decreasing MAT, supporting the Biogeochemical hypothesis. Patterns of BGB N varying with altitude, MAP and MAT differed from the patterns for leaf N, which may indicate differences in nutrient allocation and utilization by leaves and BGB. NF/B and PF/B may reflect trade-offs by plants for N and P in leaves and BGB. For the entire CGT, NF/B and PF/B increased as altitude increased. NF/B was positively related with MAP but negatively related with MAT, while PF/B showed no correlations with MAP and MAT. Results suggest that ecological stoichiometry at the community level is similar to that at the species level. Strategies of nutrient utilization by leaves and BGB are indicated to be different, and abiotic environmental conditions could influence the stoichiometric characteristics and nutrient allocation to leaves and BGB.  相似文献   

18.
19.
The dynamics of plant population differentiation may be integral in predicting aspects of introduced species invasion. In the present study, we tested the hypothesis that European populations of Senecio inaequidens (Asteraceae), an invasive species with South African origins, differentiated during migration from two independent introduction sites into divergent altitudinal and climatic zones. We carried out 2 years of common garden experiments with eight populations sampled from Belgian and ten populations from French altitudinal transects. The Belgian transect followed a temperature and precipitation gradient. A temperature and summer drought gradient characterized the French transect. We evaluated differentiation and clinal variation in plants germinated from field-collected seed using the following traits: days to germination, days to flowering, height at maturity, final plant height and aboveground biomass. Results showed that S. inaequidens populations differentiated in growth traits during invasion. During the 1st year of sampling, the results indicated clinal variation for growth traits along both the Belgium and French altitudinal transects. Data from the 2nd year of study demonstrated that with increasing altitude, a reduction in three growth traits, including plant height at maturity, final plant height and aboveground biomass, was detected along the French transect, but no longer along the Belgian one. Phenological traits did not exhibit a clear clinal variation along altitudinal transects. The possible evolutionary causes for the observed differentiation are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
E Luquet  J-P Léna  C Miaud  S Plénet 《Heredity》2015,114(1):69-79
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs–FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号