首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Matrix metalloproteinase 2 (MMP-2) contains three fibronectin type II (col) modules that contribute to its collagen specificity. We observed that the CD spectra of the separate col modules account for the CD and temperature profiles of the in-tandem col-123 construct. Thus, to the extent of not significantly perturbing the secondary structure and thermal stability characteristics of the neighboring units, the domains within col-123 do not interact. Via NMR, we investigated ligand binding properties of the three repeats within col-123: col-123/1 (the col-1 domain within col-123), col-123/2, and col-123/3. Interactions of col-123 with the collagen mimic peptide (Pro-Pro-Gly)6 (PPG6) and propeptide segment PIIKFPGDVA (p33-42) were studied. While col-123/1 and col-123/2 bound PPG6, they interacted more weakly with p33-42. In contrast, col-123/3 exhibited a higher affinity for p33-42 than for PPG6. Thus, despite their structural homology, the col repeats of MMP-2 differ in substrate specificity. Furthermore the binding affinities toward the three in-tandem col repeats were close to those determined for the individual isolated domains or for col-12/1, indicating that vis-a-vis these ligands each module interacts essentially as an autonomous unit. Interestingly the domains within col-123 exhibited enhanced affinities for Hel3, a construct that contains ((Gly-Pro-Pro)12)3 in triple helical configuration. Nevertheless the affinities were significantly higher for col-123/1 and col-123/2 relative to col-123/3 in line with their behaviors toward PPG6. This hints at a cooperative participation toward Hel3, which is a closer mimic of collagen, a hypothesis that is supported by the detected lower affinities of col-12/1, col-12/2, col-2, col-23/2, col-3, and col-23/3 for Hel3.  相似文献   

2.
Human matrix metalloproteinase-2 (MMP-2) contains an array of three fibronectin type II (FII) modules postulated to interact with gelatin (denatured collagen). Here, we verify that the NMR solution structure of the third FII repeat (COL-3) is similar to that of the second FII repeat (COL-2); characterize its ligand-binding properties; and derive dynamics properties and relative orientation in solution for the two domains of the COL-23 fragment, a construct comprising COL-2 and COL-3 in tandem, with each domain possessing a putative collagen-binding site. Interaction of the synthetic gelatin-like octadecapeptide (Pro-Pro-Gly)(6) (PPG6) with COL-3 is weaker than with COL-2. We found that a synthetic peptide comprising segment 33-42 (peptide 33-42) from the MMP-2 prodomain interacts with COL-3 and, albeit with lower affinity, with COL-2 in a way that mimics PPG6 binding. COL-3 strongly prefers peptide 33-42 over PPG6, which suggests that intramolecular interactions with the prodomain could modulate binding of pro-MMP-2 to its gelatin substrate. In COL-23, the two modules retain their structural individuality and tumble independently. Overall, the NMR data indicate that the relative orientation of the modules in COL-23 is not fixed in solution, that the modules do not interact with one another, and that COL-23 is rather flexible. The binding sites face opposite each other, and their responses to, and normalized affinities for, the longer ligand PPG12 are virtually identical to those of the individual domains for PPG6, thus precluding co- operativity, although they may interact simultaneously with multiple sites of the extracellular matrix.  相似文献   

3.
The interaction of matrix metalloproteinase 2 (MMP-2) with gelatin is mediated by three repeats homologous to fibronectin type II (FN2) modules, which are inserted in the catalytic domain in proximity of the active site. We screened a random 15-mer phage display library to identify peptides that interact with the FN2 modules of MMP-2. Interestingly, the selected peptides are not gelatin-like and do not share a common, obvious sequence motif. However, they contain a high proportion of aromatic residues. The interactions of two peptides, WHWRH0RIPLQLAAGR and THSHQWRHHQFPAPT, with constructs comprising the in-tandem first and second and second and third FN2 modules of MMP-2 (Col-12 and Col-23, respectively) were characterized by NMR. Both peptides interact with Col-12 and Col-23 with apparent association constants in the mm(-1) range. Peptide binding results in perturbation of signals from residues located in the gelatin-binding pocket and flexible parts of the molecule. Although the former finding suggests that the gelatin-binding site is involved in the contact, the interpretation of the latter is less straightforward and may well reflect both the direct and indirect effects of the interaction.  相似文献   

4.
BACKGROUND: Matrix metalloproteinase 2 (MMP-2, gelatinase A, 72 kDa type IV collagenase) has an important role in extracellular matrix degradation during cell migration and tissue remodeling. It is involved in development, inflammation, wound healing, tumor invasion, metastasis and other physiological and pathological processes. The enzyme cleaves several types of collagen, elastin, fibronectin and laminin. Binding to collagen is mediated by three repeats homologous to fibronectin type II modules, which are inserted in the catalytic domain in proximity to the active site. RESULTS: We have determined the NMR solution structure of the second type II module from human MMP-2 (col-2). The module exhibits a typical type II fold with two short double-stranded antiparallel beta sheets and three large loops packed around a cluster of conserved aromatic residues. Backbone amide dynamics, derived from (15)N relaxation experiments, correlate well with solvent accessibility and intramolecular hydrogen bonding. A synthetic peptide with the collagen consensus sequence, (Pro-Pro-Gly)(6), is shown to interact with the module. CONCLUSIONS: Spectral perturbations induced by (Pro-Pro-Gly)(6) binding reveal the region involved in the interaction of col-2 with collagen. The binding surface comprises exposed aromatic residues Phe21, Tyr38, Trp40, Tyr47, Tyr53 and Phe55, and the neighboring Gly33-Gly37 segment.  相似文献   

5.
Jani M  Tordai H  Trexler M  Bányai L  Patthy L 《Biochimie》2005,87(3-4):385-392
There is major interest in designing inhibitors for matrix metalloproteinase 2 (MMP-2, gelatinase A) since this enzyme is known to be involved in pathological processes such as tumor invasion or rheumatoid arthritis. The majority of MMP-2 inhibitor candidate drugs block the active site of MMP-2 by binding to its catalytic Zn2+ ion through a chelating (hydroxamate, sulphonate etc.) group. Despite the general interest in designing MMP-2 inhibitors, the results with many of the drug candidates were disappointing, their failure was usually explained by cross-reactions with other MMPs. One way to enhance MMP-2 selectivity is to design inhibitors that interact with both the active site and exosites such as the fibronectin type II (FN2) domains of the enzyme. In the present work, we have examined the inhibitory potential and MMP-2 selectivity of hydroxamates of three groups of peptides known to bind to the collagen-binding FN2 domains of MMP-2. The first type of peptides consisted of collagen-like (Pro-Pro-Gly)(n) repeats, peptides of the second group were identified from a random 15-mer phage display library based on their binding to immobilized FN2 domains of MMP-2. A hydroxamate of peptide p33-42, known to bind to the third FN2 domain of MMP-2 has also been tested. Our studies have shown that these compounds inhibited MMP-2 with IC50 values of 10-100 microM. The fact that their inhibitory potential was nearly identical for MMP-2del, a recombinant version of MMP-2 that lacks the FN2 domains, suggests that inhibition is not mediated by their binding to FN2 domains. It seems likely that the failure to exploit interaction with the FN2 domains is due to the fact that the FN2 domains and the catalytic domain of MMP-2 tumble independently, therefore only a tiny fraction of the conformational isomers can bind peptide hydroxamates via both the active site and the FN2 domain(s).  相似文献   

6.
Marti DN  Schaller J  Llinás M 《Biochemistry》1999,38(48):15741-15755
The kringle 2 (K2) module of human plasminogen (Pgn) binds L-lysine and analogous zwitterionic compounds, such as the antifibronolytic agent trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA). Far-UV CD and NMR spectra reveal little conformational change in K2 upon ligand binding. However, retarded (1)H-(2)H isotope exchange kinetics induced by AMCHA indicate stabilization of the K2 conformation by the ligand. Assessment of secondary structure content from CD spectra yields approximately 26% beta-STRAND, approximately 13% beta-TURN, approximately 15% 3(1)-HELIX, and approximately 6% 3(10)-HELIX. The NMR solution conformation of the K2 domain complexed to AMCHA has been determined [heavy atom rmsd = 0.49 +/- 0.09A (BACKBONE) AND 1.02+/- 0.08 (ALL)]. The K2 molecule has overall dimensions of approximately 34.5A times approximately 33.4A times approximately 22.7A . Analogous with the polypeptide outline of homologous domains, K2 contains three short antiparallel beta-sheets (paired strands 15-16/20-21, 24-25/48-49, and 62-64/72-74) and four defined beta-turns (residues 6-9, 16-19, 53-56, AND 67-70). Consistent with the CD analysis, albeit novel in the context of kringle folding, the NMR structure reveals an unpaired beta-strand structured by residues 30-32, a turn of 3(10)-helix compromising residues 38-41, and a 3(1)-helix for residues 21-24 and 74-79. We also identify alignable 3(1)-helices in previously reported homologous kringle structures. Rather high order parameter S(2) values (= approximately 0.85 +/- 0.04) characterize the K2 backbone dynamics. The lowest flexibility is observed for the two inner loop segments of residues 51-63 AND 63-75 (= approximately 0.86-0.87 +/- 0.03). Overhauser connectivities reveal close hydrophobic contacts of the ligand ring with side chains of Tyr(36), Trp(62), Phe(64), Trp(72), AND Leu(74). In most K2 structures, the N atom of AMCHA places itself approximately 3.9 and 4.4A from the anionic groups of Glu(57) and Asp(55), respectively, while its carboxylate group, H-bonded to the Tyr(36) side chain OH(eta), ion-pairs the Arg(71) guanidinium group. Consistent with the preference of K2 for binding 5-aminopentanoic acid over 6-aminohexanoic acid, the positions of the ionic centers within the K2 binding site approach each other approximately 1A closer relative to what is observed in lysine binding sites of homologous Pgn modules.  相似文献   

7.
An innovative approach to enhance the selectivity of matrix metalloproteinase (MMP) inhibitors comprises targeting these inhibitors to catalytically required substrate binding sites (exosites) that are located outside the catalytic cleft. In MMP-2, positioning of collagen substrate molecules occurs via a unique fibronectin-like domain (CBD) that contains three distinct modular collagen binding sites. To characterize the contributions of these exosites to gelatinolysis by MMP-2, seven MMP-2 variants were generated with single, or concurrent double and triple alanine substitutions in the three fibronectin type II modules of the CBD. Circular dichroism spectroscopy verified that recombinant MMP-2 wild-type (WT) and variants had the same fold. Moreover, the MMP-2 WT and variants had the same activity on a short FRET peptide substrate that is hydrolyzed independently of CBD binding. Among single-point variants, substitution in the module 3 binding site had greatest impact on the affinity of MMP-2 for gelatin. Simultaneous substitutions in two or three CBD modules further reduced gelatin binding. The rates of gelatinolysis of MMP-2 variants were reduced by 20–40% following single-point substitutions, by 60–75% after double-point modifications, and by > 90% for triple-point variants. Intriguingly, the three CBD modules contributed differentially to cleavage of dissociated α-1(I) and α-2(I) collagen chains. Importantly, kinetic analyses (kcat/Km) revealed that catalysis of a triple-helical FRET peptide substrate by MMP-2 relied primarily on the module 3 binding site. Thus, we have identified three collagen binding site residues that are essential for gelatinolysis and constitute promising targets for selective inhibition of MMP-2.  相似文献   

8.
Matrix metalloproteinase-2 (MMP-2, gelatinase A) and membrane type (MT)1-MMP (MMP-14) are cooperative dynamic components of a cell surface proteolytic axis involved in regulating the cellular signaling environment and pericellular collagen homeostasis. Although MT1-MMP exhibits type I collagenolytic but poor gelatinolytic activities, MMP-2 is a potent gelatinase with weak type I collagenolytic behavior. Recombinant linker/hemopexin C domain (LCD) of MT1-MMP binds native type I collagen, blocks MT1-MMP collagenolytic activity in trans, and by circular dichroism spectroscopy, induces localized structural perturbation in the collagen. These changes were reflected by enhanced cleavage of the MT1-LCD-bound collagen by the collagenases MMP-1 and MMP-8 but not by trypsin or MMP-7. Thus, the MT1-LCD alone can initiate triple helicase activity. In contrast, the native and denatured collagen binding properties of MMP-2 reside in the fibronectin type II modules, accordingly termed the collagen binding domain (CBD). Recombinant CBD (but not the MMP-2 LCD) also changed the circular dichroism spectra leading to increased MMP-1 and -8 cleavage of native collagen. However, recombinant CBD reduced gelatin and collagen cleavage by MMP-2 in trans as did CBD23, which comprises the second and third fibronectin type II modules, but not the CBD23 mutant W316A/W374A, which neither binds gelatin nor collagen. This indicates that MMP-2 and MT1-MMP bind collagen at a different site than MMP-1 and MMP-8. Thus, MMP-2 utilizes the CBD in cis for collagen binding and triple helicase activity, which compensates for the lack of collagen binding by the MMP-2 LCD. Hence, the MMP family has evolved two distinct mechanisms for collagen triple helicase activity using two structurally distinct domains, with triple helicase activity occurring independent of alpha-chain hydrolysis.  相似文献   

9.
Two matrix metalloproteinases, MMP-2 and MMP-9, contain each three fibronectin type II-like modules, which form their collagen binding domains (CBDs). The contributions of CBD substrate interactions to the catalytic activities of these gelatinases have attracted special interest. Recombinant (r) CBDs retain collagen binding properties and deletions of CBDs in these MMPs reduce activities on collagen and elastin. We have characterized further the requirement of the CBD for MMP-2 cleavage of gelatin. The analyses used intact rMMP-2 and rCBD to eliminate any confounding effects that might result from structural perturbations in rMMP-2 induced by deletion of the approximately 20 kDa internal CBD. In protein-protein binding assays, 2% DMSO disrupted gelatin interactions of both rCBD and rMMP-2. At this concentration, DMSO also reduced the gelatinolytic activity by approximately 70%, pointing to a central role of CBD-substrate interactions during MMP-2 cleavage of gelatin. Subsequently, soluble rCBD was determined to competitively inhibit gelatin binding of unmodified rMMP-2 to gelatin by 73% and to reduce the MMP-2 degradation of gelatin by 70-80%. The residual gelatin cleavage that was not inhibited even by molar excess rCBD could be accounted for by degradation of short substrate molecules. Indeed, rCBD inhibited rMMP-2 cleavage of an 11 amino acid collagen-like peptide substrate (NFF-1) by less than 10%. These observations were confirmed with enzyme extracts from experimental tumors in mice. In the presence of rCBD, approximately 65% of the MMP-derived gelatinolytic activity was eliminated. Together, these results demonstrate that the CBD is absolutely required for MMP-2 cleavage of full-length collagen alpha-chains, but not for short protein fragments such as those generated by hydrolysis of gelatin.  相似文献   

10.
The solution structure of the complex containing the isolated kringle 2 domain of human plasminogen (K2Pg) and VEK-30, a 30-amino acid residue internal peptide from a streptococcal M-like plasminogen (Pg) binding protein (PAM), has been determined by multinuclear high-resolution NMR. Complete backbone and side-chain assignments were obtained from triple-resonance experiments, after which structure calculations were performed and ultimately refined by restrained molecular simulation in water. We find that, in contrast with the dimer of complexes observed in the asymmetric unit of the crystal, global correlation times and buoyant molecular weight determinations of the complex and its individual components showed the monomeric nature of all species in solution. The NMR-derived structure of K2Pg in complex with VEK-30 presents a folding pattern typical of other kringle domains, while bound VEK-30 forms an end-to-end α-helix (residues 6–27) in the complex. Most of the VEK-30/K2Pg interactions in solution occur between a single face of the α-helix of VEK-30 and the lysine binding site (LBS) of K2Pg. The canonical LBS of K2Pg, consisting of Asp54, Asp56, Trp60, Arg69, and Trp70 (kringle numbering), interacts with an internal pseudo-lysine of VEK-30, comprising side-chains of Arg17, His18, and Glu20. Site-specific mutagenesis analysis confirmed that the electrostatic field formed by the N-terminal anionic residues of the VEK-30 α-helix, viz., Asp7, and the non-conserved cationic residues of K2Pg, viz., Lys43 and Arg55, play additional important roles in the docking of VEK-30 to K2Pg. Structural analysis and kringle sequence alignments revealed several important features related to exosite binding that provide a structural rationale for the high specificity and affinity of VEK-30 for K2Pg.  相似文献   

11.
MMP-2 (matrix metalloproteinase 2) contains a CBD (collagen-binding domain), which is essential for positioning gelatin substrate molecules relative to the catalytic site for cleavage. Deletion of the CBD or disruption of CBD-mediated gelatin binding inhibits gelatinolysis by MMP-2. To identify CBD-binding sites on type I collagen and collagen peptides with the capacity to compete CBD binding of gelatin and thereby inhibit gelatinolysis by MMP-2, we screened a one-bead one-peptide combinatorial peptide library with recombinant CBD as bait. Analyses of sequences from the CBD-binding peptides pointed to residues 715-721 in human alpha1(I) collagen chain as a binding site for CBD. A peptide (P713) including this collagen segment was synthesized for analyses. In SPR (surface plasmon resonance) assays, the CBD and MMP-2(E404A), a catalytically inactive MMP-2 mutant, both bound immobilized P713 in a concentration-dependent manner, but not a scrambled control peptide. Furthermore, P713 competed gelatin binding by the CBD and MMP-2(E404A). In control assays, neither of the non-collagen binding alkylated CBD or MMP-2 with deletion of CBD (MMP-2DeltaCBD) bound P713. Consistent with the exodomain functions of the CBD, P713 inhibited approximately 90% of the MMP-2 gelatin cleavage, but less than 20% of the MMP-2 activity on a peptide substrate (NFF-1) which does not require the CBD for cleavage. Confirming the specificity of the inhibition, P713 did not alter MMP-2DeltaCBD or MMP-8 activities. These experiments identified a CBD-binding site on type I collagen and demonstrated that a corresponding synthetic peptide can inhibit hydrolysis of type I and IV collagens by competing CBD-mediated gelatin binding to MMP-2.  相似文献   

12.
Human tissue-type plasminogen activator (t-PA) consists of five domains designated (starting from the N-terminus) finger, growth factor, kringle 1, kringle 2, and protease. The binding of t-PA to lysine-Sepharose and aminohexyl-Sepharose was found to require kringle 2. The affinity for binding the lysine derivatives 6-aminohexanoic acid and N-acetyllysine methyl ester was about equal, suggesting that t-PA does not prefer C-terminal lysine residues for binding. Intact t-PA and a variant consisting only of kringle 2 and protease domains were found to bind to fibrin fragment FCB-2, the very fragment that also binds plasminogen and acts as a stimulator of t-PA-catalyzed plasminogen activation. In both cases, binding could completely be inhibited by 6-aminohexanoic acid, pointing to the involvement of a lysine binding site in this interaction. Furthermore, the second site in t-PA involved in interaction with fibrin, presumably the finger, appears to interact with a part of fibrin, different from FCB-2.  相似文献   

13.
The region of fibronectin (FN) surrounding the two type II modules of FN binds type I collagen. However, little is known about interactions of this collagen binding domain with other collagen types or extracellular matrix molecules. Among several expressed recombinant (r) human FN fragments from the collagen binding region of FN, only rI6-I7, which included the two type II modules and both flanking type I modules, bound any of several tested collagens. The rI6-I7 interacted specifically with both native and denatured forms of types I and III collagen as well as denatured types II, IV, V and X collagen with apparent K(d) values of 0.2-3.7 x 10(-7) M. Reduction with DTT disrupted the binding to gelatin verifying the functional requirement for intact disulfide bonds. The FN fragments showed a weak, but not physiologically important, binding to heparin, and did not bind elastin or laminin. The broad, but selective range of ligand interactions by rI6-I7 mirrored our prior observations for the collagen binding domain (rCBD) from matrix metalloproteinase-2 (MMP-2) [J. Biol. Chem. 270 (1995) 11555]. Subsequent experiments showed competition between rI6-I7 and rCBD for binding to gelatin indicating that their binding sites on this extracellular matrix molecule are identical or closely positioned. Two collagen binding domain fragments supported cell attachment by a beta1-integrin-dependent mechanism although neither protein contains an Arg-Gly-Asp recognition sequence. Furthermore, activation of MMP-2 and MMP-9 was greatly reduced for HT1080 fibrosarcoma cells cultured on either of the fibronectin fragments compared to full-length FN. These observations imply that the biological activities of FN in the extracellular matrix may involve interactions with a broad range of collagen types, and that exposure to pathologically-generated FN fragments may substantially alter cell behavior and regulation.  相似文献   

14.
L H Huang  H Cheng  A Pardi  J P Tam  W V Sweeney 《Biochemistry》1991,30(30):7402-7409
Factor IX is a blood clotting protein that contains three regions, including a gamma-carboxyglutamic acid (Gla) domain, two tandemly connected epidermal growth factor like (EGF-like) domains, and a serine protease region. The protein exhibits a high-affinity calcium binding site in the first EGF-like domain, in addition to calcium binding in the Gla domain. The first EGF-like domain, factor IX (45-87), has been synthesized. Sequence-specific resonance assignment of the peptide has been made by using 2D NMR techniques, and its secondary structure has been determined. The protein is found to have two antiparallel beta-sheets, and preliminary distance geometry calculations indicate that the protein has two domains, separated by Trp28, with the overall structure being similar to that of EGF. An NMR investigation of the calcium-bound first EGF-like domain indicates the presence and location of a calcium binding site involving residues on both strands of one of the beta-sheets as well as the N-terminal region of the peptide. These results suggest that calcium binding in the first EGF-like domain could induce long-range (possibly interdomain) conformational changes in factor IX, rather than causing structural alterations in the EGF-like domain itself.  相似文献   

15.
Analysis of complete genome sequences has made it clear that fibronectin type II (FN2) modules are present only in the vertebrate lineage, raising intriguing questions about the origin of this module type. Kringle domains display many similarities to FN2 domains; therefore it was suggested previously that they are highly divergent descendants of the same ancestral protein-fold. Since kringles are present in arthropodes, nematodes, and invertebrate chordates as well as in vertebrates, it is suggested that the FN2 domain arose in the vertebrate lineage through major structural modification of the more ancestral kringle fold. To explore this structural transition, in the present work we compare key structural features of two highly divergent kringle domains (the kringle of Caenorhabditis elegans Ror receptor tyrosine kinase and the kringle of rat neurotrypsin) with those of plasminogen kringles and FN2 domains. Our NMR conformation fingerprinting analysis indicates that characteristic (1)H-NMR markers of kringle or FN2 native folding, such as the dispersion of Trp aromatic connectivities and shifts of the Leu(46)/Thr(16) methyl signals, both decrease in the order kringles > neurotrypsin kringle > FN2 domains. These results suggest that the neurotrypsin kringle may represent an intermediate form between typical kringles and FN2 domains.  相似文献   

16.
Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.  相似文献   

17.
The plasma lipoprotein lipoprotein(a) [Lp(a)] comprises a low-density lipoprotein (LDL)-like particle covalently attached to the glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) consists of multiple tandem repeating kringle modules, similar to plasminogen kringle IV (designated KIV1-KIV10), followed by modules homologous to the kringle V module and protease domain of plasminogen. The apo(a) KIV modules have been classified on the basis of their binding affinity for lysine and lysine analogues. The strong lysine-binding apo(a) KIV10 module mediates lysine-dependent interactions with fibrin and cell-surface receptors. Weak lysine-binding apo(a) KIV7 and KIV8 modules display a 2-3-fold difference in lysine affinity and play a direct role in the noncovalent step in Lp(a) assembly through binding to unique lysine-containing sequences in apolipoproteinB-100 (apoB-100). The present study describes the nuclear magnetic resonance solution structure of apo(a) KIV8 and its solution dynamics properties, the first for an apo(a) kringle module, and compares the effects of epsilon-aminocaproic acid (epsilon-ACA) binding on the backbone and side-chain conformation of KIV7 and KIV8 on a per residue basis. Apo(a) KIV8 adopts a well-ordered structure that shares the general tri-loop kringle topology with apo(a) KIV6, KIV7, and KIV10. Mapping of epsilon-ACA-induced chemical-shift changes on KIV7 and KIV8 indicate that the same residues are affected, despite a 2-3-fold difference in epsilon-ACA affinity. A unique loop conformation within KIV8, involving hydrophobic interactions with Tyr40, affects the positioning of Arg35 relative to the lysine-binding site (LBS). A difference in the orientation of the aromatic side chains comprising the hydrophobic center of the LBS in KIV8 decreases the size of the hydrophobic cleft compared to other apo(a) KIV modules. An exposed hydrophobic patch contiguous with the LBS in KIV8 and not conserved in other weak lysine-binding apo(a) kringle modules may modulate specificity for regions within apoB-100. An additional ligand recognition site comprises a structured arginine-glycine-aspartate motif at the N terminus of the KIV8 module, which may mediate Lp(a)/apo(a)-integrin interactions.  相似文献   

18.
Shen N  Guryev O  Rizo J 《Biochemistry》2005,44(4):1089-1096
Protein kinase C (PKC) isozymes and other receptors of diacylglycerol (DAG) bind to this widespread second messenger through their C(1) domains. These alternative DAG receptors include munc13-1, a large neuronal protein that is crucial for DAG-dependent augmentation of neurotransmitter release. Whereas the structures of several PKC C(1) domains have been determined and have been shown to require little conformational changes for ligand binding, it is unclear whether the C(1) domains from other DAG receptors contain specific structural features with key functional significance. To gain insight into this question, we have determined the three-dimensional structure in solution of the munc13-1 C(1) domain using NMR spectroscopy. The overall structure includes two beta-sheets, a short C-terminal alpha-helix, and two Zn(2+)-binding sites, resembling the structures of PKC C(1) domains. However, the munc13-1 C(1) domain exhibits striking structural differences with the PKC C(1) domains in the ligand-binding site. These differences result in occlusion of the binding site of the munc13-1 C(1) domain by a conserved tryptophan side chain that in PKCs adopts a completely different orientation. As a consequence, the munc13-1 C(1) domain requires a considerable conformational change for ligand binding. This structural distinction is expected to decrease the DAG affinity of munc13-1 compared to that of PKCs, and is likely to be critical for munc13-1 function. On the basis of these results, we propose that augmentation of neurotransmitter release may be activated at higher DAG levels than PKCs as a potential mechanism for uncoupling augmentation of release from the multitude of other signaling processes mediated by DAG.  相似文献   

19.
Interactions of the developmentally regulated chondroitin sulfate proteoglycan NG2 with human plasminogen and kringle domain-containing plasminogen fragments have been analyzed by solid-phase immunoassays and by surface plasmon resonance. In immunoassays, the core protein of NG2 binds specifically and saturably to plasminogen, which consists of five kringle domains and a serine protease domain, and to angiostatin, which contains plasminogen kringle domains 1-3. Apparent dissociation constants for these interactions range from 12 to 75 nm. Additional evidence for NG2 interaction with kringle domains comes from its binding to plasminogen kringle domain 4 and to miniplasminogen (kringle domain 5 plus the protease domain) with apparent dissociation constants in the 18-71 nm range. Inhibition of plasminogen and angiostatin binding to NG2 by 6-aminohexanoic acid suggests that lysine binding sites are involved in kringle interaction with NG2. The interaction of NG2 with plasminogen and angiostatin has very interesting functional consequences. 1) Soluble NG2 significantly enhances the activation of plasminogen by urokinase type plasminogen activator. 2) The antagonistic effect of angiostatin on endothelial cell proliferation is inhibited by soluble NG2. Both of these effects of NG2 should make the proteoglycan a positive regulator of the cell migration and proliferation required for angiogenesis.  相似文献   

20.
To gain insights into the mechanisms for the tight and highly specific interaction of the kringle 2 domain of human plasminogen (K2Pg) with a 30-residue internal peptide (VEK-30) from a group A streptococcal M-like protein, the dynamic properties of free and bound K2Pg and VEK-30 were investigated using backbone amide 15N-NMR relaxation measurements. Dynamic parameters, namely the generalized order parameter, S2, the local correlation time, τe, and the conformational exchange contribution, Rex, were obtained for this complex by Lipari-Szabo model-free analysis. The results show that VEK-30 displays distinctly different dynamic behavior as a consequence of binding to K2Pg, manifest by decreased backbone flexibility, particularly at the binding region of the peptide. In contrast, the backbone dynamics parameters of K2Pg displayed similar patterns in the free and bound forms, but, nonetheless, showed interesting differences. Based on our previous structure-function studies of this interaction, we also made comparisons of the VEK-30/K2Pg dynamics results from different kringle modules complexed with small lysine analogs. The differences in dynamics observed for kringles with different ligands provide what we believe to be new insights into the interactions responsible for protein-ligand recognition and a better understanding of the differences in binding affinity and binding specificity of kringle domains with various ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号