首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix.  相似文献   

2.
Wnt 信号通路在造血干/祖细胞自我更新的过程中发挥至关重要的作用 . 纯化的 Wnt3a 蛋白可以实现造血干/祖细胞的扩增 . 通过病毒转染原代小鼠骨髓基质细胞,建立转基因滋养层细胞 . 通过共培养对转基因滋养层细胞扩增 CD34+ 造血干/祖细胞的作用进行了研究 . 实验结果显示 , 与普通滋养层加细胞因子组相比,经转基因滋养层加细胞因子组培养的 CD34+造血干/祖细胞集落形成能力 (CFC) 是其 (1.55±0.06) 倍;混合集落形成能力是其 (1.95±0.26) 倍;高增殖潜能集落形成能力 (HPP-CFC) 是其 (1.45±0.40) 倍; LTC-IC 活性是其 (3.83±0.86) 倍 . 结果表明,转基因滋养层细胞通过分泌具有天然活性的 Wnt3a 蛋白能在体外有效地扩增造血干/祖细胞的数量 .  相似文献   

3.
Bone marrow stromal cell lines (TBR cell lines) established from temperature-sensitive Simian Virus 40 T-antigen gene transgenic mice exhibited myogenic, osteogenic, and adipogenic differentiation. The effect of oncostatin M (OSM) on such mesenchymal cell differentiation of marrow stromal cell lines was examined. One of those stromal cell lines, TBRB, differentiated into skeletal muscle, and its differentiation was stimulated by OSM, whereas differentiation of TBR10-1 into smooth muscle was inhibited by OSM. TBR31-2 is a bipotent progenitor for adipocytes and osteoblasts, and OSM stimulated osteogenic differentiation while inhibiting adipogenic differentiation. On the other hand, TBR cell lines exhibited various potentials for supporting hematopoiesis in culture. When hematopoietic progenitor cells were cocultured with OSM-stimulated stromal cell lines, TBR10-1 and TBR31-2 exhibited enhanced hematopoietic supportive activity. As responsible molecules for stromal cell dependent hematopoiesis, expression of stem cell factor (SCF) (a ligand of c-Kit), vascular cell adhesion molecule (VCAM-1) (a ligand of VLA-4), and secretion of interleukin (IL)-6 were increased by OSM. OSM affected mesenchymal cell differentiation and promoted the hematopoietic supportive activity of marrow stromal cell lines. As OSM production is induced by cytokines from hematopoietic cells, OSM may be a key factor in mutual regulation between hematopoietic cells and stromal cells in the bone marrow. OSM may play a role as a regulator in maintaining the hematopoietic microenvironment in marrow by coordinating mesenchymal differentiation.  相似文献   

4.
5.
Xyloside supplementation of long-term bone marrow cultures (LTBMCs) has been reported to result in greatly enhanced proliferation of hematopoietic stem cells. This was presumed to be the result of xyloside-mediated perturbation of proteoglycan synthesis by marrow-derived stromal cells. To investigate this phenomenon, we first studied the effects of xyloside supplementation on proteoglycan synthesis by D2XRadII bone marrow stromal cells, which support hematopoietic stem cell proliferation in vitro. D2XRadII cells were precursor labelled with 35S-sulfate, and proteoglycans separated by ion exchange chromatography, isopyknic CsCl gradient centrifugation, and gel filtration HPLC. Xyloside-supplemented cultures showed an approximately fourfold increase in total 35S incorporation, mainly as free chondroitin-dermatan sulfate (CS/DS) glycosaminoglycan chains in the culture media. Both xyloside supplemented and nonsupplemented cultures synthesized DS1, DS2, and DS3 CS/DS proteoglycans as previously described. In contrast to previous reports, xyloside was found to inhibit hematopoietic cell growth in LTBMC. Inhibitory effects were observed both in cocultures of IL-3-dependent hematopoietic cell lines with supportive stromal cell lines and in primary murine LTBMCs. Xyloside was found to have a marked inhibitory effect on the growth of murine hematopoietic stem cells and IL-3-dependent hematopoietic cell lines in clonal assay systems and in suspension cultures. In contrast, dialyzed concentrated conditioned media from LTBMCs had no such inhibitory effects. These findings suggest that xyloside-mediated inhibition of hematopoietic cell growth in LTBMC resulted from a direct effect of xyloside on proteoglycan synthesis by hematopoietic cells.  相似文献   

6.
Hematopoietic stem cells interact with a complex microenvironment both in vivo and in vitro. In association with this microenvironment, murine stem cells are maintained in vitro for several months. Fibroblast-like stromal cells appear to be important components of the microenvironment, since several laboratories have demonstrated that cloned stromal cell lines support hematopoiesis in vitro. The importance of the tissue of origin of such cell lines remains unknown, since systematic generation of stromal cell lines from adult tissues has never been accomplished. In addition, the capacity of stromal cell lines to support reconstituting stem cell has not been examined. We have previously described an efficient and rapid method for the immortalization of primary bone marrow stromal cell lines (Williams et al., Mol. Cell. Biol. 8:3864-3871, 1988) which can be used to systematically derive cell lines from multiple tissues of the adult mouse. Here we report the immortalization of primary murine lung, kidney, skin, and bone marrow stromal cells using a recombinant retrovirus vector (U19-5) containing the simian virus large T antigen (SV40 LT) and the neophosphotransferase gene. The interaction of these stromal cells with factor-dependent cells Patterson-Mix (FDCP-Mix), colony forming units-spleen (CFU-S), and reconstituting hematopoietic stem cells was studied in order to analyze the ability of such lines to support multipotent stem cells in vitro. These studies revealed that stromal cell lines from these diverse tissues were morphologically and phenotypically similar and that they quantitatively bound CFU-S and FDCP-Mix cells equally well. However, only those cell lines derived from bone marrow-supported maintenance of day 12 CFU-S in vitro. One lung-derived stromal cell line, ULU-3, supported the survival of day 8 CFU-S, but not the more primitive CFU-S12. A bone marrow-derived stromal cell line, U2, supported the survival of long-term reconstituting stem cells for up to 3 weeks in vitro as assayed by reconstitution 1 year post-transplant. These studies suggest that adherence of HSC to stromal cells is necessary but not sufficient for maintenance of these stem cell populations and that bone marrow provides specific signals relating to hematopoietic stem cell survival and proliferation.  相似文献   

7.
After detachment from the stromal cells, hematopoietic stem cells are thought to differentiate to the cytokine-dependent stages where their growth and differentiation are promoted by these cytokines. To examine the stromal regulation of hematopoietic stem cells, we previously established a primitive hematopoietic stem-like cell line, THS119, whose growth was dependent on the bone marrow stromal cell line, TBR59, and from which IL-3- (THS119/IL-3) or IL-7- (THS119/IL-7) dependent cell lines were then generated. Using these cell lines, we examined the difference in signals mediated by the stromal cells and cytokines. The cytokine-dependent cell lines (THS119/IL-3 and THS119/IL-7) showed induction of STAT5 phosphorylation and target genes for STAT5 such as CIS, pim-1, p21 and bcl-xL upon addition of IL-3 or IL-7. IL-3 or IL-7 also induced STAT5 phosphorylation and STAT5 target genes of the stromal cell-dependent cell line, THS119, in the absence of stromal cells at levels similar to the cytokine-dependent cell lines. However, quite interestingly, TBR59 stromal cells could not induce STAT5 phosphorylation of THS119 cells, although they did induce STAT5 target genes in THS119 cells. In addition, the mRNAs for STAT5 target genes in THS119 cells on the stromal cells seemed to be more stable than those in the cytokine-dependent cell lines. Expression of the antiapoptotic genes bcl-2 and bcl-xL was higher in the stromal cell-dependent cell line than in the cytokine-dependent cell lines. These results suggested that stromal cells and cytokines may provide different signals for growth and differentiation of the hematopoietic cells.  相似文献   

8.
Ontogeny-specific differences in hematopoietic behavior may be influenced by unique adhesive interactions between hematopoietic cells and the microenvironment, such as that mediated by vascular cell adhesion molecule-1 (VCAM-1, CD 106). Although VCAM-1 is variably expressed during vertebrate development, we hypothesized that VCAM-1 expression might be linked to the enhanced capacity of the fetal liver microenvironment to support hematopoiesis. To test this we used immortalized murine stromal cell lines derived from midgestation fetal liver and adult bone marrow to compare the functional expression of VCAM-1. Molecular analysis of VCAM-1 expression was performed on stromal cell lines using Northern blot analysis, immunoprecipitation studies, and solid-phase enzyme-linked immunosorbent assay. Hematopoietic studies were performed by coculturing fetal liver cells with stromal cell lines, and the functional readout was determined by high-proliferative potential colony-forming cell (HPP-CFC) adherence assays. In contrast to our initial hypothesis, we observed greater expression of VCAM-1 messenger ribonucleic acid and protein on an adult marrow stromal cell line. In functional studies, anti-VCAM-1 antibody inhibited the binding of nearly half of the HPP-CFCs to adult marrow stroma but had a minimal effect on their binding to fetal liver stroma, despite the greater adherence of HPP-CFCs to fetal stroma. We conclude that VCAM-1 influences the hematopoietic supportive capacity of immortalized murine stroma derived from adult bone marrow. Our studies suggest that cellular interactions other than those mediated by VCAM-1 are involved in the increased adhesive capacity of immortalized murine stroma derived from fetal liver.  相似文献   

9.
10.
In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the "quiescent" and "proliferative" niches in which hematopoietic stem cells and progenitors reside.  相似文献   

11.
12.
本实验对基质细胞造血刺激因子-1(SHF-1)的体外生物活性进行了研究。结果表明,SHF-1可刺激小鼠骨髓CFU-E、BFU-E、CFU-GM、CFU-Mix集落的形成,它产生的这些广泛造血刺激作用是其自身所具活性的直接影响。正常小鼠骨髓细胞与SHF-1在体外孵育4h,其中CFU-S的自杀率可提高约10%,显示它对造血干细胞也有诱导增殖作用。  相似文献   

13.
A combination of extrinsic hematopoietic growth regulators, such as stem cell factor (SCF), interleukin (IL)-3 and IL-6, can induce division of quiescent hematopoietic stem cells (HSCs), but it usually impairs HSCs' self-renewal ability. However, intrinsic negative cell cycle regulators, such as p18INK4c (p18) p27Kip1 (p27) and MAD1, can regulate the self-renewal of HSCs. It is unknown whether the removal of some extrinsic regulators and the knockdown of intrinsic negative cell cycle regulators via RNA interference (RNAi) induce ex vivo expansion of the HSCs. To address this question, a lentiviral vector-based RNAi tool was developed to produce two copies of small RNA that target multiple genes to knockdown the intrinsic negative cell cycle regulators pl8, p27 and MAD1. Colony-forming cells, long-term culture-initiating cells (LTC-IC) and engraftment assays were used to evaluate the effects of extrinsic and intrinsic regulators. Results showed that the medium with only SCF, but without IL-3 and IL-6, could maintain the sca-1+c-kit+ bone marrow cells with high LTC-IC frequency and low cell division. However, when the sca-1+c-kit+ bone marrow cells were cultured in a medium with only SCF and simultaneously knocked down the expression of pl8, p27 and MAD1 via the lentiviral vector-based RNAi, the cells exhibited both high LTC-IC frequency and high cell division, though engraftment failed. Thus, the simultaneous knockdown of pl8, p27 and MAD1 with a medium of only SCF can induce LTC-IC expansion despite the loss of engraftment ability.  相似文献   

14.
Sources of hematopoietic cells for bone marrow transplantation are limited by the supply of compatible donors, the possibility of viral infection, and autologous (patient) marrow that is depleted from prior chemo- or radiotherapy or has cancerous involvement. Anex vivo system to amplify hematopoietic progenitor cells could increase the number of patients eligible for autologous transplant, allow use of cord blood hematopoietic cells to repopulate an adult, reduce the amount of bone marrow and/or mobilized peripheral blood stem and progenitor cells required for transplantation, and reduce the time to white cell and platelet engraftment. The cloning of hematopoietic growth factors and the identification of appropriate conditions has enabled the development of successfulex vivo hematopoietic cell cultures. Purification systems based on the CD34 marker (which is expressed by the most primitive hematopoietic cells) have proven an essential tool for research and clinical applications. Present methods for hematopoietic cultures (HC) on stromal (i.e. accessory cells that support hematopoiesis) layers in flasks lack a well-controlled growth environment. Several bioreactor configurations have been investigated, and a first generation of reactors and cultures has reached the clinical trial stage. Our research suggests that perfusion conditions improve substantially the performance of hematopoietic reactors. We have designed and tested a perfusion bioreactor system which is suitable for the culture of non-adherent cells (without stromal cells) and readily scaleable for clinical therapies. Eliminating the stromal layer eliminates the need for a stromal cell donor, reduces culture time, and simplifies the culture system. In addition, we have compared the expansion characteristics of both mononuclear and CD34+ cells, since the latter are frequently assumed to give a superior performance for likely transplantation therapies.Abbreviations BFU0-E burst forming unit-erythroid - BM bone marrow - CB cord blood - CFU-C colony forming unit-culture - CFU-E colony forming unit-erythroid - CFU-F colony forming unit-fibroblast - CFU-GEMM colony forming unit-granulocyte, erythroid, macrophage, megakaryocyte - CFU-GM colony forming unit-granulocyte, macrophage - CFU-Mix colony forming unit-mixed (also known as CFU-GEMM) - CML chronic myeloid leukemia - CSF colony stimulating factor - DMSO dimethyl sulfoxide - ECM extracellular matrix - EPO erythropoietin - FL fetal liver - HC hematopoietic culture - LTBMC long-term bone marrow culture - LTC-IC long-term culture initiating cell - LTHC long-term hematopoietic culture - MNC mononuclear cells - PB peripheral blood  相似文献   

15.
We have investigated the use of BMSC (bone marrow stromal cell) as a feeder cell for improving culture efficiency of ESC (embryonic stem cell). B6CBAF1 blastocysts or ESC stored after their establishment were seeded on to a feeder layer of either SCA-1+/CD45-/CD11b- BMSC or MEF (mouse embryonic fibroblast). Feeder cell activity in promoting ESC establishment from the blastocysts and in supporting ESC maintenance did not differ significantly between BMSC and MEF feeders. However, the highest efficiency of colony formation after culturing of inner cell mass cells of blastocysts was observed with the BMSC line that secreted the largest amount of LIF (leukaemia inhibitory factor). Exogenous LIF was essential for the ESC establishment on BMSC feeder, but not for ESC maintenance. Neither change in stem cell-specific gene expression nor increase in stem cell aneuploidy was detected after the use of BMSC feeder. We conclude that BMSC can be utilized as the feeder of ESC, which improves culture efficiency.  相似文献   

16.
Human hematopoietic cells can be maintained in vitro for many weeks in the absence of exogenously provided hematopoietic growth factors if an adequate stromal cell containing adherent layer is present. We have now extended the use of this type of long-term culture (LTC) system to create a model of perturbed hematopoiesis in which human tumor cells that constitutively produce a variety of factors are co-cultured together with normal human marrow cells. In the present study, we used the human bladder carcinoma cell line (5637) because these cells were known to produce not only a variety of factors active directly on hematopoietic cells but also factors that can stimulate hematopoietic growth factor production by human marrow stromal cells. Analysis of mRNA extracted from the adherent layer and measurement of growth factor bioactivity in the medium of established LTC of human marrow containing irradiated 5637 cells, showed increased levels of interleukin-1 and -6, as well as granulocyte and granulocyte-macrophage colony-stimulating factor production by comparison to control cultures. As in normal cultures, high proliferative potential clonogenic hematopoietic cells were found almost exclusively in the adherent layer of these co-cultures, but these primitive cells were maintained in a state of continuous turnover, in contrast to control cultures where the same cell types showed the expected oscillation between a quiescent and a proliferating state following each weekly change of the medium. A similar perturbation of primitive progenitor cycling was achieved by adding medium conditioned by 5637 cells twice a week to otherwise normal LTC. The presence of irradiated 5637 cells in the LTC or the addition of 5637 conditioned medium also resulted in modest (2- to 3-fold) but sustained increases in the total hematopoietic progenitor population, as well as in the final output of terminally differentiated granulocytes and macrophages. These findings indicate that primitive hematopoietic cells in LTC can be kept in a state of continuous activation for many weeks by appropriate endogenous or exogenous hematopoietic growth factor provision and that this does not necessarily lead either to their rapid exhaustion or to a large amplification in output of mature progeny.  相似文献   

17.
To investigate the effect of Trp53 (formerly known as p53) on stromal cells of the hematopoietic microenvironment, long-term bone marrow cultures were established from mice in which the Trp53 gene had been inactivated by homologous recombination (Trp53(-/-)) or their wild-type littermates (Trp53(+/+)). Long-term bone marrow cultures from Trp53(-/-) mice continued to produce nonadherent cells for 22 weeks, while Trp53(+/+) cultures ceased production after 15 weeks. There was a significant increase in the number of nonadherent cells produced in Trp53(-/-) long-term bone marrow cultures beginning at week 9 and continuing to week 22 (P < 0.02). The Trp53(-/-) cultures also showed significantly increased cobblestone island formation indicative of early hematopoietic stem cell-containing colonies beginning at week 10 (P < 0.01). Cobblestone islands persisted until weeks 15 and 22 in Trp53(+/+) and Trp53(-/-) cultures, respectively. Co-cultivation experiments in which Trp53(+/+) Sca1(+)lin- enriched hematopoietic stem cells were plated on Trp53(-/-) stromal cells showed increased cobblestone island formation compared to Trp53(-/-) Scal+lin- cells plated on Trp53(+/+) or Trp53(-/-) stromal cells. Radiation survival curves for clonal bone marrow stromal cells revealed a similar D0 for the Trp53(+/+) and Trp53(-/-) cell lines (1.62 +/- 0.16 and 1.49 +/- 0. 08 Gy, respectively; P = 0.408), and similar n (8.60 +/- 3.23 and 10.71 +/- 0.78, respectively) (P = 0.491). Cell cycle analysis demonstrated a G2/M-phase arrest that occurred 6 h after irradiation for both Trp53(+/+) and Trp53(-/-) stromal cell lines. After 10 Gy irradiation, there was no significant increase in the frequency of apoptosis detected in Trp53(+/+) compared to Trp53(-/-) marrow stromal cell lines. In the stromal cell lines, ICAM-1 was constitutively expressed on Trp53(+/+) but not Trp53(-/-) cells; however, a 24-h exposure to TNF-alpha induced detectable ICAM-1 on Trp53(-/-) cells and increased expression on Trp53(+/+) cells. To test the effect of Trp53 on the radiation biology of hematopoietic progenitor cells, the 32D cl 3 cell line was compared with a subclone in which expression of an E6 inserted transgene accelerates ubiquitin-dependent degradation of Trp53, thus preventing accumulation of Trp53 after genotoxic stress. The radiation survival curves were similar with no significant difference in the D0 or n, or in the percentage of cells undergoing apoptosis after 10 Gy irradiation between the two cell lines. Cells of the 32D-E6 cell line displayed a G2/M-phase arrest 6 h after 10 Gy, while cells of the parent line exhibited both a G2/M-phase arrest and a G1-phase arrest at 24 and 48 h. The results suggest a complex mechanism of action of Trp53 on the interactions between stromal and hematopoietic cells in long-term bone marrow cultures.  相似文献   

18.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

19.

Background

Tissue inhibitor of metalloproteinases-3 (TIMP-3) inhibits matrix metalloproteinases and membrane-bound sheddases. TIMP-3 is associated with the extracellular matrix and is expressed in highly remodeling tissues. TIMP-3 function in the hematopoietic system is unknown.

Methodology/Principal Findings

We now report that TIMP-3 is highly expressed in the endosteal region of the bone marrow (BM), particularly by osteoblasts, endothelial and multipotent mesenchymal stromal cells which are all important cellular components of hematopoietic stem cell (HSC) niches, whereas its expression is very low in mature leukocytes and hematopoietic stem and progenitor cells. A possible role of TIMP-3 as an important niche component was further suggested by its down-regulation during granulocyte colony-stimulating factor-induced mobilization. To further investigate TIMP-3 function, mouse HSC were retrovirally transduced with human TIMP-3 and transplanted into lethally irradiated recipients. TIMP-3 overexpression resulted in decreased frequency of B and T lymphocytes and increased frequency of myeloid cells in blood and BM, increased Lineage-negative Sca-1+KIT+ cell proliferation in vivo and in vitro and increased colony-forming cell trafficking to blood and spleen. Finally, over-expression of human TIMP-3 caused a late onset fatal osteosclerosis.

Conclusions/Significance

Our results suggest that TIMP-3 regulates HSC proliferation, differentiation and trafficking in vivo, as well as bone and bone turn-over, and that TIMP-3 is expressed by stromal cells forming HSC niches within the BM. Thus, TIMP-3 may be an important HSC niche component regulating both hematopoiesis and bone remodeling.  相似文献   

20.
A novel indirect co-culture system was established to support ex vivo expansion of hematopoietic progenitors in umbilical cord blood (UCB) by using thrombopoietin (TPO)/Flt-3 ligand (FL)-transduced human-marrow-derived mesenchymal stem cells (tfhMSCs) as a feeder. UCB CD34+ cells were isolated and cultured by using five culture systems in serum-containing or serum-free medium. Suitable aliquots of cultured cells were taken to monitor cell production, clonogenic activity, and long-term culture-initiating culture (LTC-IC) output. Finally, the severe-combined immunodeficient mouse (SCID) repopulating cell (SRC) assay was performed to confirm the ability of the indirect co-cultured cells from the tfhMSCs system to reconstitute long-term hematopoiesis. Results showed significant differences in the number of total nucleated cells (TNCs) among the culture systems with respect to serum-containing medium or serum-free medium during 14-day culture. In addition, on day 14, the outputs of CD34+ cells, the colony-forming units (CFUs) in culture, and the CFUs in mixed colonies containing erythroid and myeloid cells and megakaryocytes in the tfhMSC indirect co-culture system were significantly enhanced. The LTC-IC assay demonstrated that the tfhMSCs indirect co-culture system had the strongest activity. The SCID-SRC assay confirmed the extensive ability of the expanded cells from the tfhMSCs indirect co-culture systems to reconstitute long-term hematopoiesis. Furthermore, polymerase chain reaction analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of non-obese diabetic/SCID mice. Thus, hMSCs transduced with TPO/FL, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro. The tfhMSC indirect co-culture system may therefore be a suitable system for ex vivo manipulation of primitive progenitor cells under non-contact culture conditions.This work was supported by the Zhejiang Scientific Foundation (no. 2003C23015).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号