首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用激光共聚焦显微术在小鼠卵母细胞中检测蛋白激酶C   总被引:16,自引:4,他引:12  
用免疫荧光化学与激光共聚焦显微术结合的方法研究了小鼠卵母细胞中蛋白激酶C(PKC)α和βⅠ的表达和定位,以及蛋白激酶C(PKC)和皮质颗粒的双标记,探讨了以哺乳动物卵母细胞为实验对象进行免疫荧光共聚焦显微研究的简便方法.结果发现,PKC α和βⅠ在小鼠生发泡期和MⅡ期卵母细胞中都有表达,但表达部位存在差异.说明采用改进的激光共聚焦显微术,可以方便、灵敏地检测特异蛋白质在卵母细胞中的表达部位,从而为生殖、发育研究提供有效手段.  相似文献   

2.
大鼠卵母细胞体外发育过程中的微管组装研究(英)   总被引:3,自引:2,他引:1  
大鼠卵母细胞的发育具有许多与其他哺乳动物不同的特点,用激光共聚焦显微术研究了大鼠卵母细胞发育过程中微管的组装过程,以及一些因素对微管组装过程的影响.结果表明,在大鼠卵母细胞减数分裂的细胞周期进程中,细胞微管系统发生广泛而剧烈的重组,紫杉醇、星形孢菌素和冈田酸等药物能显著改变卵母细胞内的微管组织状态.大鼠卵母细胞可以在体外发生自发的孤雌活化,也可以被细胞松弛素诱导发生胞质假分裂.因此,研究了在这些过程中微管结构的特殊构象,以期更加深入认识这些特殊细胞事件的生化机理.  相似文献   

3.
大鼠卵母细胞体外发育过程中的微管组装研究   总被引:1,自引:1,他引:0  
大鼠卵母细胞的发育具有许多与其他哺乳动物不同的特点,用激光共聚焦显微术研究了大鼠卵母细胞发育过程中微管的组装过程,以及一些因素对微管组装过程的影响.结果表明,在大鼠卵母细胞减数分裂的细胞周期进程中,细胞微管系统发生广泛而剧烈的重组,紫杉醇、星形孢菌素和冈田酸等药物能显著改变卵母细胞内的微管组织状态.大鼠卵母细胞可以在体外发生自发的孤雌活化,也可以被细胞松弛素诱导发生胞质假分裂.因此,研究了在这些过程中微管结构的特殊构象,以期更加深入认识这些特殊细胞事件的生化机理.  相似文献   

4.
谷朝勇  李兰  沈伟 《生物技术通讯》2007,18(6):1025-1029
哺乳动物卵泡卵母细胞发生的研究一直是发育生物学研究的重点之一。简要叙述了哺乳动物卵泡卵母细胞发生的一般过程,重点分析了原始生殖细胞向卵母细胞分化过程中gdf9、c-kti、BMP4及TGF家族关键基因的表达调控对卵母细胞发生的影响,以及卵母细胞与颗粒细胞间的相互调节作用,介绍了卵母细胞体外发生的最新研究进展及面临的难题等,为进一步研究原始生殖细胞向卵母细胞分化以及卵泡生长发育的机制提供了理论基础。  相似文献   

5.
张俊玉  吕珊  牛慧敏  雷安民 《遗传》2018,40(4):279-291
哺乳动物卵母细胞成熟过程需要进行两次连续的不对称分裂,最终形成体积差异巨大的子细胞:大体积的卵母细胞和两种体积较小的极体。不对称分裂现象是哺乳动物卵母细胞减数分裂的典型特征,不对称分裂后的卵母细胞是高度极化的细胞。精卵结合后,细胞重新恢复了对称分裂,但是在卵母细胞减数分裂过程中形成的极性特征却得以保留并影响早期胚胎的极性。本文对近年来在哺乳动物卵母细胞不对称分裂方面的相关研究展开综述,从细胞质不对称分裂和细胞核不对称分裂两个方面对染色体、细胞骨架在哺乳动物卵母细胞不对称分裂中的作用、细胞器在哺乳动物卵母细胞成熟过程中的重组分配、染色体非随机分离等过程进行介绍,旨在从细胞和分子水平阐述哺乳动物卵母细胞不对称分裂的主要机制。  相似文献   

6.
激光共聚焦扫描显微镜采用激光光源、共聚焦技术和点扫描技术,使其分辨力较传统光学显微镜大为提高。与其他的生物学技术相配合,可定性、定量、定位地检测组织细胞内的多种生化成分。它具有的活细胞动态监测、断层扫描及三维图像重建等功能,使其在抗菌机理研究、尤其是抗生物膜研究中得到大量的应用。本文就激光共聚焦扫描显微镜在抗菌剂作用位点,抗菌剂对微生物细胞膜,微生物生理代谢,以及微生物生物膜形成与结构的影响等研究中的应用做一综述。  相似文献   

7.
科技信息     
关于调整本刊栏目的公告根据学科发展的要求 ,从 2 0 0 5年开始 ,《激光生物学报》主要栏目作如下调整 ,特此公告 :1.调整后的栏目 :基础研究生、生物光子学、激光生物医学 (含光子中医学、激光整形美容、光动力疗法等 )、放射生物学 (含激光育种、辐射育种、空间育种 )、离子束生物工程、激光生物技术 (含微束照射技术、光镊技术、成像技术、光谱技术、共聚焦显微技术、细胞分流技术等 )及其仪器研制、专题综述、科技信息。2 .删除的栏目 :研究简报、专题讲座、教学园地等。因此 ,凡属此类栏目的稿件 ,本刊一律不再接受 ,敬请作者谅解。《…  相似文献   

8.
山羊卵母细胞体外成熟过程中线粒体的动态分布   总被引:2,自引:0,他引:2  
目的研究山羊卵母细胞减数分裂过程中线粒体的动态分布。方法收集山羊卵母细胞,在M199中分别培养4、8、12、16、20和24 h,用特异性线粒体标记探针进行标记,用激光扫描共聚焦显微镜观察线粒体的分布情况。结果生发泡期线粒体多分散在卵母细胞的胞质内,并且距生发泡有一定的距离;生发泡破裂期线粒体逐渐移向染色质;第一次减数分裂中期与第二次减数分裂中期线粒体成簇密布在染色体周围。排出的第一极体中也含有大量的线粒体。结论同其他哺乳动物卵母细胞体外成熟过程中线粒体分布情况相比,线粒体在山羊卵母细胞中的分布具有明显的相似性。线粒体密布在成熟卵母细胞染色体周围可能与极体的排出和受精后染色体的迁移有关。  相似文献   

9.
BMP15对卵巢功能的调节及对生殖的影响   总被引:2,自引:1,他引:1  
综述了BMP15在哺乳动物生殖系统中的表达和生物学作用,提示BMP15在垂体中表达并促进FSH的合成.在卵巢中由卵母细胞特异性分泌,促进颗粒细胞增殖并抑制FSH依赖性细胞分化.在一些物种中BMP15的变异会造成多胎或者不育,显示BMP15是影响哺乳动物生殖的重要因子.建议继续探讨BMP15的作用机理,同时研究其在其他物种中的变异对生殖的影响.  相似文献   

10.
在过去的几十年中,哺乳动物卵母细胞和胚胎冷冻保存技术因在辅助生殖技术及实际生产中应用广泛,其研究发展尤为迅速.多个物种(包括人)的卵母细胞和胚胎冷冻保存研究获得了受孕和活产的成功佐证,为冷冻保存技术的临床应用提供了理论依据,并成为体外受精不可缺少的环节.尽管哺乳动物卵母细胞和胚胎的冷冻保存技术的研发和应用取得了巨大进展,例如为可能不育的患者贮藏生殖潜能、卵子冻存库的建立以及卵母细胞和胚胎的跨国运输,但成功率仍达不到使用新鲜卵母细胞和胚胎的水平,还存在许多难题有待解决.本文针对低温保存技术中制约冷冻效率和成功率的主要问题进行了综述,旨在解决技术研发中遇到的瓶颈,为改进技术提供借鉴和参考,鼓励低温生物学研究者继续开展深入研究,加快推进冷冻保存技术在人类和动物辅助生殖技术中的实际应用.  相似文献   

11.
The actin and microtubule cytoskeletons of mammalian oocytes and zygotes exist in distinct forms at various subcellular locations. This enables each cytoskeletal system to perform vastly different functions in time and space within the same cell. In recent years, key discovery enabling tools including light-sensitive microscopy assays have helped to illuminate cytoskeletal form and function in female reproductive cell biology. New findings include unexpected participation of F-actin in oocyte chromosome segregation, oocyte specific modes of spindle self-organization as well as existence of nuclear actin polymers whose functions are only starting to emerge. Functional actin-microtubule interactions have also been identified as an important feature that supports mammalian embryo development. Other advances have revealed reproductive age-related changes in chromosome structure and dynamics that predispose mammalian eggs to aneuploidy.  相似文献   

12.
Wen  Lu  Liu  Qiang  Xu  Jingjing  Liu  Xixi  Shi  Chaoyi  Yang  Zuwei  Zhang  Yili  Xu  Hong  Liu  Jiang  Yang  Hui  Huang  Hefeng  Qiao  Jie  Tang  Fuchou  Chen  Zi-Jiang 《中国科学:生命科学英文版》2020,63(1):18-58
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development,including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.  相似文献   

13.
Recent patch-clamp studies have shown that anti-porin antibodies, applied to the external side of excised plasma membrane patches of mammalian astrocytes, close chloride channels that are thought to be engaged in cell volume regulation. Frog oocytes are often used to study this basic cell function. Here we document the localisation of endogenous porin voltage-dependent anion-selective channels in Xenopus laevis oocyte plasma membranes. In confocal laser microscopy images a disjunctive pattern of fluorescing spots appear about 10 microm apart. Labelling was prevented by preabsorption of the antibodies with synthetic peptides comprising the epitope of the antigen. Immuno-gold marking of oocyte surfaces followed by silver enhancement of the gold particles lead to a plasma membrane labelling corresponding to that obtained by the confocal laser approach. The data suggests the presence of voltage-dependent, anion-selective channels in oocyte plasma membranes. This data should be borne in mind when frog oocytes are used to study the characteristics of endogenous or heterologously expressed ion channels or regulatory proteins.  相似文献   

14.
To understand the mechanisms which regulate meiosis-specific cell cycle and chromosome distribution in mammalian oocytes, the level and the localization of CENP-E and the kinetochore number and direction on a half bivalent were examined during pig oocyte maturation. CENP-E is a kinetochore motor protein whose intracellular level and localization are strictly regulated in the somatic cell cycle. The localizations of CENP-E on meiotic chromosomes from diakinesis stage to anaphase I and at the spindle midzone at telophase I were shown by immunofluorescent confocal microscopy to be similar to those in somatic cells of pig and other species. Further, ultrastructural analysis revealed the presence of CENP-E on fibrous corona and outer plate of kinetochores of the meiotic chromosomes. However, unlike mitosis, CENP-E staining was continuously detected either at the spindle midzone or on the kinetochores of segregated chromosomes during the first polar body emission. Consistent with this, immunoblot analysis revealed that CENP-E level remained high during meiosis I/meiosis II (MI/MII) transition and that some of CENP-E survived through the transition even in cycloheximide-treated oocytes in which cyclin B1 was completely degraded. Furthermore, examinations of CENP-E signals in confocal microscopy and kinetochores in electron microscopy in MI and MII oocytes provide the cytological evidence in mammalian oocytes which suggests that each sister chromatid in a pair has its own kinetochore which localizes side-by-side so that two sister chromatids on a half bivalent are oriented toward and connected to the same pole in MI.  相似文献   

15.
Both Xenopus laevis oocytes and mammalian cells are widely used for heterologous expression of several classes of proteins, and membrane proteins especially, such as ion channels or receptors, have been extensively investigated in both cell types. A full characterization of a specific protein will often engage both oocytes and mammalian cells. Efficient expression of a protein in both systems have thus far only been possible by subcloning the cDNA into two different vectors because several different molecular requirements should be fulfilled to obtain a high protein level in both mammalian cells and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained a dual-function vector capable of supporting protein production in both Xenopus oocytes and CHO-K1 cells at an expression level equivalent to the levels obtained with vectors optimized for either oocyte or mammalian expression. Our functional studies have been performed with hERGI, KCNQ4, and Kv1.3 potassium channels.  相似文献   

16.
17.
Guaranteeing the sustainability of gametogenesis is a fundamental issue for perpetuating the species. In the mammalian ovary, sustainability is accomplished by keeping a number of oocytes “stocked” in the dormant state. Despite the evident importance of this state, the mechanisms underlying the oocyte dormancy are not fully understood, although it is presumed that both intrinsic and extrinsic factors are involved. Here, we review environmental factors involved in the regulation of oocyte dormancy. Consideration of the environmental factors illustrates the nature of the ovarian compartment, in which primordial follicles reside. This should greatly improve our understanding of the mechanisms and also assist in reconstitution of the dormant state in culture. Accumulating knowledge on the dormant state of oocytes will contribute to a wide range of research in fields such as developmental biology, reproductive biology and regenerative medicine.  相似文献   

18.
BACKGROUND: ClC anion channels are ubiquitous and have been identified in organisms as diverse as bacteria and humans. Despite their widespread expression and likely physiological importance, the function and regulation of most ClCs are obscure. The nematode Caenorhabditis elegans offers significant experimental advantages for defining ClC biology. These advantages include a fully sequenced genome, cellular and molecular manipulability, and genetic tractability. RESULTS: We show by patch clamp electrophysiology that C. elegans oocytes express a hyperpolarization- and swelling-activated Cl(-) current with biophysical characteristics strongly resembling those of mammalian ClC-2. Double-stranded RNA-mediated gene interference (RNAi) and single-oocyte RT-PCR demonstrated that the channel is encoded by clh-3, one of six C. elegans ClC genes. CLH-3 is inactive in immature oocytes but can be triggered by cell swelling. However, CLH-3 plays no apparent role in oocyte volume homeostasis. The physiological signal for channel activation is the induction of oocyte meiotic maturation. During meiotic maturation, the contractile activity of gonadal sheath cells, which surround oocytes and are coupled to them via gap junctions, increases dramatically. These ovulatory sheath cell contractions are initiated prematurely in animals in which CLH-3 expression is disrupted by RNAi. CONCLUSIONS: The inwardly rectifying Cl(-) current in C. elegans oocytes is due to the activity of a ClC channel encoded by clh-3. Functional and structural similarities suggest that CLH-3 and mammalian ClC-2 are orthologs. CLH-3 is activated during oocyte meiotic maturation and functions in part to modulate ovulatory contractions of gap junction-coupled gonadal sheath cells.  相似文献   

19.
The Xenopus laevis (African clawed frog) system has long been popular for studies of both developmental and cell biology, based on a variety of its intrinsic features including the large size of Xenopus oocytes, eggs, and embryos, and the relative ease of manipulation. Unfortunately, the large size has also been considered a serious impediment for high-resolution light microscopy, as has the heavy pigmentation. However, the recent development and exploitation of 4D imaging approaches, and the fact that much of what is of most interest to cell and developmental biologists takes place near the cell surface, indicates that such concerns are no longer valid. Consequently, the Xenopus system in many respects is now as good as other model systems considered to be ideal for microscopy-based studies. Here, 4D imaging and its recent applications to cytoskeletal imaging in Xenopus oocytes and eggs are discussed.  相似文献   

20.
Oogenesis serves a singular role in the reproductive success of plants and animals. Of their remarkable differentiation pathway what stands out is the ability of oocytes to transform from a single cell into the totipotent lineages that seed the early embryo. As our understanding that commonalities between diverse organisms at the genetic, cellular and molecular levels are conserved to achieve successful reproduction, the notion that embryogenesis presupposes oogenesis has entered the day-to-day parlance of regenerative medicine and stem cell biology. With emphasis on the mammalian oocyte, this review will cover (1) current concepts regarding the birth, survival and growth of oocytes that depends on complex patterns of cell communication between germ line and soma, (2) the notion of "maternal inheritance" from a genetic and epigenetic perspective, and (3) the relative value of model systems with reference to current clinical and biotechnology applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号