首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
His-172 and Tyr-169 are components of a triad in the active site of trimethylamine dehydrogenase (TMADH) comprising Asp-267, His-172, and Tyr-169. Stopped-flow kinetic studies with trimethylamine as substrate have indicated that mutation of His-172 to Gln reduces the limiting rate constant for flavin reduction approximately 10-fold (Basran, J., Sutcliffe, M. J., Hille, R., and Scrutton, N. S. (1999) Biochem. J. 341, 307-314). A kinetic isotope effect (KIE = k(H)/k(D)) accompanies flavin reduction by H172Q TMADH, the magnitude of which varies significantly with solution pH. With trimethylamine, flavin reduction by H172Q TMADH is controlled by a single macroscopic ionization (pK(a) = 6.8 +/- 0.1). This ionization is perturbed (pK(a) = 7.4 +/- 0.1) in reactions with perdeuterated trimethylamine and is responsible for the apparent variation in the KIE with solution pH. At pH 9.5, where the functional group controlling flavin reduction is fully ionized, the KIE is independent of temperature in the range 277-297 K, consistent with vibrationally assisted hydrogen tunneling during breakage of the substrate C-H bond. Y169F TMADH is approximately 4-fold more compromised than H172Q TMADH for hydrogen transfer, which occurs non-classically. Studies with Y169F TMADH suggest partial thermal excitation of substrate prior to hydrogen tunneling by a vibrationally assisted mechanism. Our studies illustrate the varied effects of compromising mutations on tunneling regimes in enzyme molecules.  相似文献   

2.
Tyr-169 in trimethylamine dehydrogenase is one component of a triad also comprising residues His-172 and Asp-267. Its role in catalysis and in mediating the magnetic interaction between FMN cofactor and the 4Fe/4S center have been investigated by stopped-flow and EPR spectroscopy of a Tyr-169 to Phe (Y169F) mutant of the enzyme. Tyr-169 is shown to play an important role in catalysis (mutation to phenylalanine reduces the limiting rate constant for bleaching of the active site flavin by about 100-fold) but does not serve as a general base in the course of catalysis. In addition, we are able to resolve two kinetically influential ionizations involved in both the reaction of free enzyme with free substrate (as reflected in klim/Kd), and in the breakdown of the Eox.S complex (as reflected in klim). In EPR studies of the Y169F mutant, it is found that the ability of the Y169F enzyme to form the spin-interacting state between flavin semiquinone and reduced 4Fe/4S center characteristic of wild-type enzyme is significantly compromised. The present results are consistent with Tyr-169 representing the ionizable group of pKa approximately 9.5, previously identified in pH-jump studies of electron transfer, whose deprotonation must occur for the spin-interacting state to be established.  相似文献   

3.
The reaction of trimethylamine dehydrogenase with trimethylamine   总被引:1,自引:0,他引:1  
The reductive half-reaction of trimethylamine dehydrogenase with its physiological substrate trimethylamine has been examined by stopped-flow spectroscopy over the pH range 6.0-11.0, with attention focusing on the fastest of the three kinetic phases of the reaction, the flavin reduction/substrate oxidation process. As in previous work with the slow substrate diethylmethylamine, the reaction is found to consist of three well resolved kinetic phases. The observed rate constant for the fast phase exhibits hyperbolic dependence on the substrate concentration with an extrapolated limiting rate constant (klim) greater than 1000 s-1 at pH above 8.5, 10 degrees C. The kinetic parameter klim/Kd for the fast phase exhibits a bell-shaped pH dependence, with two pKa values of 9.3 +/- 0.1 and 10. 0 +/- 0.1 attributed to a basic residue in the enzyme active site and the ionization of the free substrate, respectively. The sigmoidal pH profile for klim gives a single pKa value of 7.1 +/- 0. 2. The observed rate constants for both the intermediate and slow phases are found to decrease as the substrate concentration is increased. The steady-state kinetic behavior of trimethylamine dehydrogenase with trimethylamine has also been examined, and is found to be adequately described without invoking a second, inhibitory substrate-binding site. The present results demonstrate that: (a) substrate must be protonated in order to bind to the enzyme; (b) an ionization group on the enzyme is involved in substrate binding; (c) an active site general base is involved, but not strictly required, in the oxidation of substrate; (d) the fast phase of the reaction with native enzyme is considerably faster than observed with enzyme isolated from Methylophilus methylotrophus that has been grown up on dimethylamine; and (e) a discrete inhibitory substrate-binding site is not required to account for excess substrate inhibition, the kinetic behavior of trimethylamine dehydrogenase can be readily explained in the context of the known properties of the enzyme.  相似文献   

4.
Modeling studies of the trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH-ETF) electron transfer complex have suggested potential roles for Val-344 and Tyr-442, found on the surface of TMADH, in electronic coupling between the 4Fe-4S center of TMADH and the FAD of ETF. The importance of these residues in electron transfer, both to ETF and to the artificial electron acceptor, ferricenium (Fc(+)), has been studied by site-directed mutagenesis and stopped-flow spectroscopy. Reduction of the 6-(S)-cysteinyl FMN in TMADH is not affected by mutation of either Tyr-442 or Val-344 to a variety of alternate side chains, although there are modest changes in the rate of internal electron transfer from the 6-(S)-cysteinyl FMN to the 4Fe-4S center. The kinetics of electron transfer from the 4Fe-4S center to Fc(+) are sensitive to mutations at position 344. The introduction of smaller side chains (Ala-344, Cys-344, and Gly-344) leads to enhanced rates of electron transfer, and likely reflects shortened electron transfer "pathways" from the 4Fe-4S center to Fc(+). The introduction of larger side chains (Ile-344 and Tyr-344) reduces substantially the rate of electron transfer to Fc(+). Electron transfer to ETF is not affected, to any large extent, by mutation of Val-344. In contrast, mutation of Tyr-442 to Phe, Leu, Cys, and Gly leads to major reductions in the rate of electron transfer to ETF, but not to Fc(+). The data indicate that electron transfer to Fc(+) is via the shortest pathway from the 4Fe-4S center of TMADH to the surface of the enzyme. Val-344 is located at the end of this pathway at the bottom of a small groove on the surface of TMADH, and Fc(+) can penetrate this groove to facilitate good electronic coupling with the 4Fe-4S center. With ETF as an electron acceptor, the observed rate of electron transfer is substantially reduced on mutation of Tyr-442, but not Val-344. We conclude that the flavin of ETF does not penetrate fully the groove on the surface of TMADH, and that electron transfer from the 4Fe-4S center to ETF may involve a longer pathway involving Tyr-442. Mutation of Tyr-442 likely disrupts electron transfer by perturbing the interaction geometry of TMADH and ETF in the productive electron transfer complex, leading to less efficient coupling between the redox centers.  相似文献   

5.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   

6.
A common feature of all the proposed mechanisms for monoamine oxidase is the initiation of catalysis with the deprotonated form of the amine substrate in the enzyme-substrate complex. However, recent steady-state kinetic studies on the pH dependence of monoamine oxidase led to the suggestion that it is the protonated form of the amine substrate that binds to the enzyme. To investigate this further, the pH dependence of monoamine oxidase A was characterized by both steady-state and stopped-flow techniques with protiated and deuterated substrates. For all substrates used, there is a macroscopic ionization in the enzyme-substrate complex attributed to a deprotonation event required for optimal catalysis with a pK(a) of 7.4-8.4. In stopped-flow assays, the pH dependence of the kinetic isotope effect decreases from approximately 13 to 8 with increasing pH, leading to assignment of this catalytically important deprotonation to that of the bound amine substrate. The acid limb of the bell-shaped pH profile for the rate of flavin reduction over the substrate binding constant (k(red)/K(s), reporting on ionizations in the free enzyme and/or free substrate) is due to deprotonation of the free substrate, and the alkaline limb is due to unfavourable deprotonation of an unknown group on the enzyme at high pH. The pK(a) of the free amine is above 9.3 for all substrates, and is greatly perturbed (DeltapK(a) approximately 2) on binding to the enzyme active site. This perturbation of the substrate amine pK(a) on binding to the enzyme has been observed with other amine oxidases, and likely identifies a common mechanism for increasing the effective concentration of the neutral form of the substrate in the enzyme-substrate complex, thus enabling efficient functioning of these enzymes at physiologically relevant pH.  相似文献   

7.
TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.  相似文献   

8.
Actinomycetes are a group of gram-positive bacteria that includes pathogenic mycobacterial species, such as Mycobacterium tuberculosis. These organisms do not have glutathione and instead utilize the small molecule mycothiol (MSH) as their primary reducing agent and for the detoxification of xenobiotics. Due to these important functions, enzymes involved in MSH biosynthesis and MSH-dependent detoxification are targets for drug development. The metal-dependent deacetylase N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) catalyzes the hydrolysis of N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside to form 1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside and acetate in MSH biosynthesis. Herein we examine the chemical mechanism of MshB. We demonstrate that the side chains of Asp-15, Tyr-142, His-144, and Asp-146 are important for catalytic activity. We show that NaF is an uncompetitive inhibitor of MshB, consistent with a metal-water/hydroxide functioning as the reactive nucleophile in the catalytic mechanism. We have previously shown that MshB activity has a bell-shaped dependence on pH with pK(a) values of ~7.3 and 10.5 (Huang, X., Kocabas, E. and Hernick, M. (2011) J. Biol. Chem. 286, 20275-20282). Mutagenesis experiments indicate that the observed pK(a) values reflect ionization of Asp-15 and Tyr-142, respectively. Together, findings from our studies suggest that MshB functions through a general acid-base pair mechanism with the side chain of Asp-15 functioning as the general base catalyst and His-144 serving as the general acid catalyst, whereas the side chain of Tyr-142 probably assists in polarizing substrate/stabilizing the oxyanion intermediate. Additionally, our results indicate that Tyr-142 is a dynamic side chain that plays key roles in catalysis, modulating substrate binding, chemistry, and product release.  相似文献   

9.
The steady-state reaction of trimethylamine dehydrogenase (TMADH) with the artificial electron acceptor ferricenium hexafluorophosphate (Fc(+)) has been studied by stopped-flow spectroscopy, with particular reference to the mechanism of inhibition by trimethylamine (TMA). Previous studies have suggested that the presence of alternate redox cycles is responsible for the inhibition of activity seen in the high-substrate regime. Here, we demonstrate that partitioning between these redox cycles (termed the 0/2 and 1/3 cycles on the basis of the number of reducing equivalents present in the oxidized/reduced enzyme encountered in each cycle) is dependent on both TMA and electron acceptor concentration. The use of Fc(+) as electron acceptor has enabled a study of the major redox forms of TMADH present during steady-state turnover at different concentrations of substrate. Reduction of Fc(+) is found to occur via the 4Fe-4S center of TMADH and not the 6-S-cysteinyl flavin mononucleotide: the direction of electron flow is thus analogous to the route of electron transfer to the physiological electron acceptor, an electron-transferring flavoprotein (ETF). In steady-state reactions with Fc(+) as electron acceptor, partitioning between the 0/2 and 1/3 redox cycles is dependent on the concentration of the electron acceptor. In the high-concentration regime, inhibition is less pronounced, consistent with the predicted effects on the proposed branching kinetic scheme. Photodiode array analysis of the absorption spectrum of TMADH during steady-state turnover at high TMA concentrations reveals that one-electron reduced TMADH-possessing the anionic flavin semiquinone-is the predominant species. Conversely, at low concentrations of TMA, the enzyme is predominantly in the oxidized form during steady-state turnover. The data, together with evidence derived from enzyme-monitored turnover experiments performed at different concentrations of TMA, establish the operation of the branched kinetic scheme in steady-state reactions. With dimethylbutylamine (DMButA) as substrate, the partitioning between the 0/2 and 1/3 redox cycles is poised more toward the 0/2 cycle at all DMButA concentrations studied-an observation that is consistent with the inability of DMButA to act as an effective inhibitor of TMADH.  相似文献   

10.
We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work also points to the importance of Arg-alpha237 in controlling the thermodynamics of electron transfer, the dynamics of ETF, and the protection of reducing equivalents following disassembly of the TMADH-2ETF complex.  相似文献   

11.
The imidazole of His-195 plays an essential role in the proposed general base mechanism of chloramphenicol acetyltransferase (CAT). The structure of the binary complex of CATIII and chloramphenicol suggests that two unusual interactions might determine the conformation of the side chain of His-195: (i) an intraresidue hydrogen bond between its main chain carbonyl and the protonated N delta 1 of the imidazole ring and (ii) face-to-face van der Waals contact between the His-195 imidazole group and the aromatic side chain of Tyr-25. Tyr-25 also makes a hydrogen bond, via its phenolic hydroxyl, to the carbonyl oxygen of the substrate chloramphenicol. Replacement of Tyr-25 of CATIII by phenylalanine results in a modest increase in the Km for chloramphenicol (from 11.6 to 14.6 microM) and a 2-fold fall in kcat (599 to 258 s-1), indicative of a free energy contribution to transition state binding of 0.6 kcal mol-1 for the hydrogen bond between Tyr-25 and chloramphenicol. In contrast, substitution of Tyr-25 by alanine yields an enzyme that is dramatically impaired in its ability to bind chloramphenicol (Km = 173 microM). As kcat for Ala-25 CAT is also reduced (130 s-1), the loss of the aryl group results in a 69-fold decrease in kcat/Km, corresponding to a free energy contribution to binding and catalysis of 2.5 kcal mol-1. In addition to the loss of the hydrogen bond between Tyr-25 and chloramphenicol, the loss of substrate affinity in Ala-25 CAT may be a direct consequence of reduced hydrophobicity of the chloramphenicol-binding site and/or the loss of critical constraints on the precise conformation of the catalytic imidazole. However, as with wild type CAT, inactivation of Ala-25 CAT by the affinity reagent 3-(bromoacetyl) chloramphenicol is accompanied by modification solely at N epsilon 2 of His-195. Hence, the results demonstrate that tautomeric stabilization of the imidazole ring persists in the absence of van der Waals interactions with the side chain of Tyr-25, probably as a consequence of hydrogen bonding between the protonated N delta 1 and the carbonyl oxygen of His-195.  相似文献   

12.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase (AANAT)) is a critical enzyme in the light-mediated regulation of melatonin production and circadian rhythm. It is a member of the GNAT (GCN-5-related N-acetyltransferase) superfamily of enzymes, which catalyze a diverse array of biologically important acetyl transfer reactions from antibiotic resistance to chromatin remodeling. In this study, we probed the functional properties of two histidines (His-120 and His-122) and a tyrosine (Tyr-168) postulated to be important in the mechanism of AANAT based on prior x-ray structural and biochemical studies. Using a combination of steady-state kinetic measurements of microviscosity effects and pH dependence on the H122Q, H120Q, and H120Q/H122Q AANAT mutants, we show that His-122 (with an apparent pK(a) of 7.3) contributes approximately 6-fold to the acetyltransferase chemical step as either a remote catalytic base or hydrogen bond donor. Furthermore, His-120 and His-122 appear to contribute redundantly to this function. By analysis of the Y168F AANAT mutant, it was demonstrated that Tyr-168 contributes approximately 150-fold to the acetyltransferase chemical step and is responsible for the basic limb of the pH-rate profile with an apparent (subnormal) pK(a) of 8.5. Paradoxically, Y168F AANAT showed 10-fold enhanced apparent affinity for acetyl-CoA despite the loss of a hydrogen bond between the Tyr phenol and the CoA sulfur atom. The X-ray crystal structure of Y168F AANAT bound to a bisubstrate analog inhibitor showed no significant structural perturbation of the enzyme compared with the wild-type complex, but revealed the loss of dual inhibitor conformations present in the wild-type complex. Taken together with kinetic measurements, these crystallographic studies allow us to propose the relevant structural conformations related to the distinct alkyltransferase and acetyltransferase reactions catalyzed by AANAT. These findings have significant implications for understanding GNAT catalysis and the design of potent and selective inhibitors.  相似文献   

13.
Palfey BA  Björnberg O  Jensen KF 《Biochemistry》2001,40(14):4381-4390
Dihydroorotate dehydrogenase (DHOD) oxidizes dihydroorotate (DHO) to orotate in the only redox reaction of pyrimidine biosynthesis. The enzyme from Escherichia coli is a membrane-bound FMN-containing enzyme that is thought to use ubiquinone as the oxidizing substrate. The chemistry of the reduction of the flavin in DHOD from E. coli by the substrate dihydroorotate (DHO) was studied at 4 degrees C in anaerobic stopped-flow experiments conducted over a broad range of pH values. A Michaelis complex that was characterized by a approximately 20 nm red-shift of the oxidized flavin absorbance formed within the dead-time of the stopped-flow instrument ( approximately 1 ms) upon mixing with DHO. The flavin of the intermediate was reduced by DHO, forming a reduced flavin-orotate charge-transfer complex. The rate constant for the flavin reduction reaction increased with pH, from a value of 1 s(-1) at pH 6.5 to approximately 360 s(-1) at pH values greater than an observed pK(a) of 9.5 which was ascribed to Ser175, the active-site base. At all pH values, the reduced flavin-orotate charge-transfer complex dissociated too slowly to be catalytically relevant. Therefore, the oxidizing quinone substrate must bind to the reduced enzyme-orotate complex at a site distinct from the substrate binding site, in agreement with steady-state kinetic studies [Bj?rnberg, O., Grüner, A.-C., Roepstorff, P., and Jensen, K. F. (1999) Biochemistry 38, 2899-2908]. Menadione was used as a model quinone substrate to oxidize dithionite-reduced DHOD. The reduced enzyme-orotate complex reacted rapidly with menadione (180 s(-1)), demonstrating that the reduced enzyme-orotate complex is a catalytically competent intermediate.  相似文献   

14.
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.  相似文献   

15.
A voltammetric enzyme electrode was developed based on nicotinamide-independent trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), which catalyses the oxidation of trimethylamine (TMA) to dimethylamine and formaldehyde. A quaternized osmium hydrogel polymer, poly(vinylimidazole-[Os(4,4′-dimethyl-2,2′-bipyridine)2Cl]+/2+) with ethylamine (PVI-Os-EA), was prepared as a potential redox mediator in an electrochemical biosensor. TMA was detected using TMADH that was co-immobilized with an osmium hydrogel polymer on electrodeposited gold nanoparticles (Au-NPs) on screen-printed carbon electrodes (SPCEs). The Au-NPs deposited onto SPCEs provided about a three times higher electrochemical response compared to that of a planar gold electrode. As TMA was catalyzed by wired TMADH, the electrical signal was monitored at 0.3 V versus Ag/AgCl by cyclic voltammetry and chronoamperometry. The anode currents increased linearly in proportion to the TMA concentration over the 0 ∼ 2.5 mM range with a detection limit of 1 μM (R = 0.9972).  相似文献   

16.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.  相似文献   

18.
Blood coagulation is triggered when the serine protease factor VIIa (fVIIa) binds to cell surface tissue factor (TF) to form the active enzyme-cofactor complex. TF binding to fVIIa allosterically augments the enzymatic activity of fVIIa toward macromolecular substrates and small peptidyl substrates. The mechanism of this enhancement remains unclear. Our previous studies have indicated that soluble TF (sTF; residues 1-219) alters the pH dependence of fVIIa amidolytic activity (Neuenschwander et al. (1993) Thromb. Haemostasis 70, 970), indicating an effect of TF on critical ionizations within the fVIIa active center. The pKa values and identities of these ionizable groups are unknown. To gain additional insight into this effect, we have performed a detailed study of the pH dependence of fVIIa amidolytic activity. Kinetic constants of Chromozym t-PA (MeSO(2)-D-Phe-Gly-Arg-pNA) hydrolysis at various pH values were determined for fVIIa alone and in complex with sTF. The pH dependence of both enzymes was adequately represented using a diprotic model. For fVIIa alone, two ionizations were observed in the free enzyme (pK(E1) = 7.46 and pK(E2) = 8.67), with at least a single ionization apparent in the Michaelis complex (pK(ES1) similar 7.62). For the fVIIa-TF complex, the pK(a) of one of the two important ionizations in the free enzyme was shifted to a more basic value (pK(E1) = 7.57 and pK(E2) = 9.27), and the ionization in the Michaelis complex was possibly shifted to a more acidic pH (pK(ES1) = 6.93). When these results are compared to those obtained for other well-studied serine proteases, K(E1) and K(ES1) are presumed to represent the ionization of the overall catalytic triad in the absence and presence of substrate, respectively, while K(E2) is presumed to represent ionization of the alpha-amino group of Ile(153). Taken together, these results would suggest that sTF binding to fVIIa alters the chemical environment of the fVIIa active site by protecting Ile(153) from deprotonation in the free enzyme while deprotecting the catalytic triad as a whole when in the Michaelis complex.  相似文献   

19.
Aromatic amino acid aminotransferase is active toward both aromatic and dicarboxylic amino acids, and the mechanism for this dual substrate recognition has been an issue in the enzymology of this enzyme. Here we show that, in the reactions with aromatic and dicarboxylic ligands, the pK(a) of the Schiff base formed between the coenzyme pyridoxal 5'-phosphate and Lys258 or the substrate increases successively from 6.6 in the unliganded enzyme to approximately 8.8 in the Michaelis complex and to >10.5 in the external Schiff base complex. Mutations of Arg292 and Arg386 to Leu, which mimic neutralization of the positive charges of the two arginine residues by the ligand carboxylate groups, increased the Schiff base pK(a) by 0.1 and 0.7 unit, respectively. In contrast to these moderate effects of the Arg mutations, the cleavage of the Lys258 side chain of the Schiff base, which was brought about by preparing a mutant enzyme in which Lys258 was changed to Ala and the Schiff base was reconstituted with methylamine, produced the Schiff base pK(a) value of 10.2, that being 3.6 units higher than that of the wild-type enzyme. The observation indicates that the Schiff base pK(a) in the enzyme is lowered by the torsion around the C4-C4' axis of the Schiff base and suggests that the pK(a) is mainly controlled by changing the torsion angle during the course of catalysis. This mechanism, first observed for the reaction of aspartate aminotransferase with aspartate [Hayashi, H., Mizuguchi, H., and Kagamiyama, H. (1998) Biochemistry 37, 15076-15085], does not require the electrostatic contribution from the omega-carboxylate group of the substrate, and can explain why in aromatic amino acid aminotransferase the aromatic substrates can increase the Schiff base pK(a) during catalysis to the same extent as the dicarboxylic substrates. This is the first example in which the torsion pK(a) coupling of the pyridoxal 5'-phosphate Schiff base has been demonstrated in pyridoxal enzymes other than aspartate aminotransferase, and suggests the generality of the mechanism in the catalysis of aminotransferases related to aspartate aminotransferase.  相似文献   

20.
Bacterial trimethylamine dehydrogenase contains a novel type of covalently bound flavin mononucleotide and a tetrameric iron-sulphur centre. The dehydrogenase takes up 1.5mol of dithionite/mol of enzyme and is thereby converted into the flavin quinol-reduced (4Fe-4S) form, with the expected bleaching of the visible absorption band of the flavin and the emergence of signals of typical reduced ferredoxin in the electronparamagnetic-resonance spectrum. On reduction with a slight excess of substrate, however, unusual absorption and electron-paramagnetic-resonance spectra appear quite rapidly. The latter is attributed to extensive interaction between the reduced (4Fe-4S) centre and the flavin semiquinone. The species of enzyme arising during the catalytic cycle were studied by a combination of rapid-freeze e.p.r. and stopped-flow spectophotometry. The initial reduction of the flavin to the quinol form is far too rapid to be rate-limiting in catalysis, as is the reoxidation of the substrate-reduced enzyme by phenazine methosulphate. Formation of the spin-spin-interacting species from the dihydroflavin is considerably slower, however, and it may be the rate-limiting step in the catalytic cycle, since its rate of formation agrees reasonably well with the catalytic-centre activity determined in steady-state kinetic assays. In addition to the interacting form, a second form of the enzyme was noted during reduction by trimethylamine, differing in absorption spectrum, the structure of which remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号