首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Siberian hamsters (Phodopus sungorus) exhibit reproductive and immunological responses to photoperiod. Short (<10-h light/day) days induce gonadal atrophy, increase leukocyte concentrations, and attenuate thermoregulatory and behavioral responses to infection. Whereas hamster reproductive responses to photoperiod are dependent on pineal melatonin secretion, the role of the pineal in short-day induced changes in immune function is not fully understood. To examine this, adult hamsters were pinealectomized (PINx) or sham-PINx, and transferred to short days (9-h light/day; SD) or kept in their natal long-day (15-h light/day; LD) photoperiod. Intact and PINx hamsters housed in LD maintained large testes over the next 12 weeks; sham-PINx hamsters exhibited gonadal regression in SD, and PINx abolished this effect. Among pineal-intact hamsters, blood samples revealed increases in leukocyte, lymphocyte, CD62L+ lymphocyte, and T cell counts in SD relative to LD; PINx did not affect leukocyte numbers in LD hamsters, but abolished the SD increase in these measures. Hamsters were then treated with bacterial lipopolysaccharide (LPS), which induced thermoregulatory (fever), behavioral (anorexia, reductions in nest building), and somatic (weight loss) sickness responses in all groups. Among pineal-intact hamsters, febrile and behavioral responses to LPS were attenuated in SD relative to LD. PINx did not affect sickness responses to LPS in LD hamsters, but abolished the ameliorating effects of SD on behavioral responses to LPS. Surprisingly, PINx failed to abolish the effect of SD on fever. In common with the reproductive system, PINx induces the LD phenotype in most aspects of the immune system. The pineal gland is required for photoperiodic regulation of circulating leukocytes and neural-immune interactions that mediate select aspects of sickness behaviors.  相似文献   

3.
The reproductive system of Siberian hamsters (Phodopus sungorus) undergoes rapid phenotypic responses to changes in day length that occur around the time of weaning. The present experiments tested whether the immune system of Siberian hamsters is similarly photoperiodic early in life and whether photoperiodic changes in melatonin or gonadal hormone secretions mediate any such responses to day length. Circulating blood leukocyte concentrations (WBC) were measured in juvenile male Siberian hamsters that were gestated in long-days (LD), transferred to short-days (SD) on the day of birth, and subsequently either remained in SD or were transferred from SD to LD at 18 days of age (day 18). WBC values were comparable between LD and SD hamsters on day 18. Between day 18 and day 32, SD hamsters exhibited a 3-fold increase in WBC, whereas LD hamsters failed to undergo a significant increase in WBC during this interval. WBC of LD hamsters was significantly lower than that of SD hamsters on day 25 and on day 32. In LD housed males, peripheral injections of melatonin delivered so as to extend the nocturnal duration of elevated endogenous melatonin secretion (i.e., provided in late afternoon) on days 18-31 increased WBC as measured on day 32. Peripubertal (day 17) gonadectomy abolished the immunosuppressive effect of LD exposure on WBC, and treatment with silastic implants containing testosterone suppressed WBC independent of photoperiod treatment. These data indicate that juvenile Siberian hamsters are immunologically responsive to photoperiod and that the leukocyte responses to day length are the result of melatonin-mediated effects of photoperiod on testicular hormone secretion.  相似文献   

4.
5.
6.
Application of gibberellin A53 (GA53) to short-day (SD)-grown spinach (Spinacia oleracea L.) plants caused an increase in petiole length and leaf angle similar to that found in plants transferred to long days (LD). [2H] GA53 was fed to plants in SD, LD, and in a SD to LD transition experiment, and the metabolites were identified by gas chromatography with selected ion monitoring. After 2, 4, or 6 SD, [2H]GA53 was converted to [2H]GA19 and [2H]GA44. No other metabolites were detected. After 2 LD, only [2H] GA20 was identified. In the transition experiment in which plants were given 4 SD followed by 2 LD, all three metabolites were found. The results demonstrate unequivocally that GA19, GA20, and GA44 are metabolic products of GA53, and strongly suggest that photoperiod regulates GA metabolism, in part, by controlling the conversion of GA19 to GA20.  相似文献   

7.
Siberian hamsters adapt to seasonal changes by reducing their reproductive function during short days (SD). SD exposure reduces uterine mass and reproductive capacity, but underlying cellular mechanisms remain unknown. Because matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are important in uterine development, parturition, and postpartum remodeling, their expression in uterine tissue from Siberian hamsters undergoing photoperiod-mediated reproductive regression and recrudescence was investigated. Female hamsters were exposed to long day (LD, 16L:8D, controls) or SD (8L:16D) for 3-12 weeks (regression); a second group was exposed to SD or LD for 14 weeks and then transferred to LD for 0-8 weeks (recrudescence). Hamsters were euthanized, uteri collected, and homogenates analyzed by gelatin zymography or Western blotting for MMP and TIMP protein levels. Uterine weight decreased (67-75%) at SD weeks 12-14 and increased post-LD transfer (PT) reaching LD values by PT week 2. MMP-2, but not MMP-9 activity was reduced by SD week 12 or 14 but increased to LD levels at PT week 2. MMP-3 expression increased at SD week 9 compared to other SD and LD groups. MMP-14 and -13 protein levels decreased at SD week 3 but returned to LD levels by SD week 6. During recrudescence, MMP-3 (PT weeks 0-2), MMP-13 (PT week 4), and MMP-14 (PT weeks 2, 4) protein levels were higher than LD. TIMP-1 and 2 were present at low levels. Significant and differential variations in uterine MMP activity/expression during photoperiod-induced regression and recrudescence were observed. These changes likely reflect increases in tissue remodeling during both the adaptation to SD and the restoration of reproductive function.  相似文献   

8.
To study the interaction of photoperiod and circadian neurotransmitter activity, L-DOPA L-dihydroxyphenylalanine, dopamine precursor) was administered daily, 12 hr after 5-HTP (5-hydroxy tryptophan, serotonin precursor) in sexually immature Japanese quail, raised under short photoperiod (LD8:16) since hatching. The 12 hr treatment of 5-HTP and L-DOPA was given under continuous condition of light for 11 days. After treatment the quail were transferred to intermediate day length (LD 13.5:10.5). The cloacal gland size of drug treated group increased significantly in comparison to control. The quail were then transferred to short photoperiod (LD 8:16). The cloacal gland size of both the groups started decreasing gradually but the rate was significantly low in drug treated quail in comparison to control. The results indicate that the endogenous mechanism controlling seasonality may be reset by drugs that influence serotonergic and dopaminergic activity. The 12 hr relation between the two drugs is stimulatory for gonadal growth under intermediate day length and retards the rate of regression when transferred to short days.  相似文献   

9.
10.
Changes in day length affect several measures of immunity in seasonally breeding mammals. In Siberian hamsters (Phodopus sungorus), short day lengths suppress specific secondary antibody responses to the keyhole limpet hemocyanin (KLH) antigen and enhance cutaneous delayed-type hypersensitivity (DTH) responses to dinitrofluorobenzene (DNFB). These experiments tested whether day length affects secondary antibody and DTH responses by altering immune function solely during the interval after the initial exposure to each antigen, solely during the interval after the second exposure, or during both stages of the respective immune responses. Adult male Siberian hamsters were exposed to either a long (16 h light/day; LD) or a short (8 h light/day; SD) photoperiod for 7.5 wk before receiving an initial exposure to each antigen (KLH injection, cutaneous DNFB treatment; separate groups of animals for each antigen). A subset of LD hamsters was transferred to the SD photo-period, and a subset of SD hamsters was transferred to the LD photoperiod. Other hamsters remained in LD or SD. Eight weeks later, all hamsters were challenged with a second subcutaneous injection of KLH or a second application of DNFB to the ear, and immune responses were measured. Exposure to SD during the primary antibody response did not affect secondary IgG responses, but SD exposure during the secondary response significantly suppressed IgG production independent of day length during the initial KLH treatment. In contrast, exposure to SD during the DNFB challenge enhanced the ensuing DTH response, but this enhancement depended on the photoperiod prevailing during the initial exposure. Exposure to SD during the sensitization stage did not enhance DTH in hamsters subsequently exposed to LD. The data suggest that short photoperiods have enduring effects on immune responsiveness and on the establishment and retention of immunological memory.  相似文献   

11.
Photosynthetic acclimation to CO2-limiting stress is associated with control of genetic and physiological responses through a signal transduction pathway, followed by integrated monitoring of the environmental changes. Although several CO2-responsive genes have been previously isolated, genome-wide analysis has not been applied to the isolation of CO2-responsive genes that may function as part of a carbon-concentrating mechanism (CCM) in photosynthetic eukaryotes. By comparing expression profiles of cells grown under CO2-rich conditions with those of cells grown under CO2-limiting conditions using a cDNA membrane array containing 10,368 expressed sequence tags, 51 low-CO2 inducible genes and 32 genes repressed by low CO2 whose mRNA levels were changed more than 2.5-fold in Chlamydomonas reinhardtii Dangeard were detected. The fact that the induction of almost all low-CO2 inducible genes was impaired in the ccm1 mutant suggests that CCM1 is a master regulator of CCM through putative low-CO2 signal transduction pathways. Among low-CO2 inducible genes, two novel genes, LciA and LciB, were identified, which may be involved in inorganic carbon transport. Possible functions of low-CO2 inducible and/or CCM1-regulated genes are discussed in relation to the CCM.  相似文献   

12.
A growing number of studies use the plant species-specific inverse relationship between atmospheric CO(2) concentration and stomatal density (SD) or stomatal index (SI) as a proxy for paleo-CO(2) levels. A total of 285 previously published SD and 145 SI responses to variable CO(2) concentrations from a pool of 176 C(3) plant species are analyzed here to test the reliability of this method. The percentage of responses inversely responding to CO(2) rises from 40 and 36% (for SD and SI, respectively) in experimental studies to 88 and 94% (for SD and SI, respectively) in fossil studies. The inconsistent experimental responses verify previous concerns involving this method, however the high percentage of fossil responses showing an inverse relationship clearly validates the method when applied over time scales of similar length. Furthermore, for all groups of observations, a positive relationship between CO(2) and SD/SI is found in only 相似文献   

13.
Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response.  相似文献   

14.
Jeong S  Clark SE 《Genetics》2005,169(2):907-915
Photoperiod has been known to regulate flowering time in many plant species. In Arabidopsis, genes in the long day (LD) pathway detect photoperiod and promote flowering under LD. It was previously reported that clavata2 (clv2) mutants grown under short day (SD) conditions showed suppression of the flower meristem defects, namely the accumulation of stem cells and the resulting production of extra floral organs. Detailed analysis of this phenomenon presented here demonstrates that the suppression is a true photoperiodic response mediated by the inactivation of the LD pathway under SD. Inactivation of the LD pathway was sufficient to suppress the clv2 defects under LD, and activation of the LD pathway under SD conditions restored clv2 phenotypes. These results reveal a novel role of photoperiod in flower meristem development in Arabidopsis. Flower meristem defects of clv1 and clv3 mutants are also suppressed under SD, and 35S:CO enhanced the defects of clv3, indicating that the LD pathway works independently from the CLV genes. A model is proposed to explain the interactions between photoperiod and the CLV genes.  相似文献   

15.
光周期对布氏田鼠和长爪沙鼠体重和能量代谢的影响   总被引:13,自引:6,他引:7  
本文测定了光周期对雄性布氏田鼠和长爪沙鼠的体重、基础代谢率和能量代谢的影响。动物从长光照(16L∶8D , LD) 转入短光照(8L∶16D , SD) 条件下驯化6 周(田鼠) 和7 周(沙鼠) 。结果显示: (1) 无论在LD还是SD 条件下, 两种动物的体重都趋于增加, 但反应程度不同也具有种间差异性。两种动物的体重对光周期的反应有时段性, 约14 d 前两种动物的体重增加迅速, 而后增加缓慢, 3 周左右趋于稳定。短光照条件下布氏田鼠和长爪沙鼠的体重分别增长了37 %和11 % , 均低于长光照组(分别为47 %和25 %) , 说明短光照条件下布氏田鼠和长爪沙鼠的体重增长较长光照缓慢; (2) 光照对两种动物的摄入能、消化能和可代谢能均没有显著影响,摄入能与体重的增长无关; (3) 光照对两种动物的基础代谢率无显著影响。这些结果表明: 布氏田鼠和长爪沙鼠在自然环境中, 可能以光周期作为一种信号, 当环境温度降低、食物质量变劣时, 采取降低体重以减少绝对能量需求的策略而适应环境。  相似文献   

16.
Arabidopsis flowers in long day (LD) in response to signals transported from the photoinduced leaf to the shoot apex. These LD signals may include protein of the gene FLOWERING LOCUS T (FT) while in short day (SD) with its slower flowering, signalling may involve sucrose and gibberellin. Here, it is shown that after 5 weeks growth in SD, a single LD up-regulated leaf blade expression of FT and CONSTANS (CO) within 4-8 h, and flowers were visible within 2-3 weeks. Plants kept in SDs were still vegetative 7 weeks later. This LD response was blocked in ft-1 and a co mutant. Exposure to different LD light intensities and spectral qualities showed that two LD photoresponses are important for up-regulation of FT and for flowering. Phytochrome is effective at a low intensity from far-red (FR)-rich incandescent lamps. Independently, photosynthesis is active in an LD at a high intensity from red (R)-rich fluorescent lamps. The photosynthetic role of a single high light LD is demonstrated here by the blocking of the flowering and FT increase on removal of atmospheric CO(2) or by decreasing the LD light intensity by 10-fold. These conditions also reduced leaf blade sucrose content and photosynthetic gene expression. An SD light integral matching that in a single LD was not effective for flowering, although there was reasonable FT-independent flowering after 12 SD at high light. While a single photosynthetic LD strongly amplified FT expression, the ability to respond to the LD required an additional but unidentified photoresponse. The implications of these findings for studies with mutants and for flowering in natural conditions are discussed.  相似文献   

17.
We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis.  相似文献   

18.
Molina L  Kahmann R 《The Plant cell》2007,19(7):2293-2309
The fungus Ustilago maydis is a biotrophic pathogen of maize (Zea mays). In its genome we have identified an ortholog of YAP1 (for Yeast AP-1-like) from Saccharomyces cerevisae that regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H(2)O(2) than wild-type cells, and their virulence was significantly reduced. U. maydis yap1 could partially complement the H(2)O(2) sensitivity of a yap1 deletion mutant of S. cerevisiae, and a Yap1-green fluorescent protein fusion protein showed nuclear localization after H(2)O(2) treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two Cys residues prevented accumulation in the nucleus, and the respective mutant strains showed the same virulence phenotype as Deltayap1 mutants. Diamino benzidine staining revealed an accumulation of H(2)O(2) around yap1 mutant hyphae, which was absent in the wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection, Yap1 showed nuclear localization after penetration up to 2 to 3 d after infection. Through array analysis, a large set of Yap1-regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its Yap1-controlled H(2)O(2) detoxification system for coping with early plant defense responses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号