首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

2.
Mitochondria are a major source of superoxide, formed by the one-electron reduction of oxygen during electron transport. Superoxide initiates oxidative damage to phospholipids, proteins and nucleic acids. This damage may be a major cause of degenerative disease and aging. In isolated mitochondria, superoxide production on the matrix side of the membrane is particularly high during reversed electron transport to complex I driven by oxidation of succinate or glycerol 3-phosphate. Reversed electron transport and superoxide production from complex I are very sensitive to proton motive force, and can be strongly decreased by mild uncoupling of oxidative phosphorylation. Both matrix superoxide and the lipid peroxidation product 4-hydroxy-trans-2-nonenal can activate uncoupling through endogenous UCPs (uncoupling proteins). We suggest that superoxide releases iron from aconitase, leading to a cascade of lipid peroxidation and the release of molecules such as hydroxy-nonenal that covalently modify and activate the proton conductance of UCPs and other proteins. A function of the UCPs may be to cause mild uncoupling in response to matrix superoxide and other oxidants, leading to lowered proton motive force and decreased superoxide production. This simple feedback loop would constitute a self-limiting cycle to protect against excessive superoxide production, leading to protection against aging, but at the cost of a small elevation of respiration and basal metabolic rate.  相似文献   

3.
We have studied the time course of the absorption of bovine liver catalase after pulse radiolysis with oxygen saturation in the presence and absence of superoxide dismutase. In the absence of superoxide dismutase, catalase produced Compound I and another species. The formation of Compound I is due to the reaction of ferric catalase with hydrogen peroxide, which is generated by the disproportionation of the superoxide anion (O-2). The kinetic difference spectrum showed that the other species was neither Compound I nor II. In the presence of superoxide dismutase, the formation of this species was found to be inhibited, whereas that of Compound I was little affected. This suggests that this species is formed by the reaction of ferric catalase with O-2 and is probably the oxy form of this enzyme (Compound III). The rate constant for the reaction of O-2 and ferric catalase increased with a decrease in pH (cf. 4.5 X 10(4) M-1 s-1 at pH 9 and 4.6 X 10(6) M-1 s-1 at pH 5.). The pH dependence of the rate constant can be explained by assuming that HO2 reacts with this enzyme more rapidly than O-2.  相似文献   

4.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

5.
The negative surface charge of many cellular membranes concentrates protons and rarefies superoxide in their vicinity. It was speculated that the low pH near membranes should facilitate superoxide protonation, thereby concentrating hydroperoxyl radical in this region. This process would exacerbate both lipid peroxidation and the transfer of oxidative damage between cellular compartments, as hydroperoxyl is a good initiator of lipid peroxidation and permeates lipid bilayers. Surface-charge-enhancement of hydroperoxyl production in mitochondria--which are main intracellular sources of superoxide--should be particularly relevant. Using a simple model of superoxide metabolism in the mitochondrial matrix, we calculated the gradients of pH, superoxide, and hydroperoxyl, and assessed the previous hypothesis in the light of available experimental data. The following predictions ensued: (i) Near the mitochondrial inner membrane, gradients of superoxide concentration with amplitude up to 36% of the maximal concentration, and pH gradients of up to 0.19 units between membrane and bulk. (ii) These electrostatically induced gradients die out within approximately 4 nm of the membrane. (iii) At high (hundreds of nanometres) inter-cristae separations, owing to enzyme-catalyzed dismutation of superoxide, both superoxide and hydroperoxyl become rarefied towards the midpoint between cristae. (iv) Surface charge should neither enhance superoxide protonation nor concentrate hydroperoxyl near biological membranes.  相似文献   

6.
Metabolically active rat-liver mitochondria impregnated with a site-chemiluminescent probe emitted steady-state light generated by endomitochondrial superoxide and adducts. Endomotichondrial pH was estimated at 8.1±0.2 (7.8–8.3). The weakly basic environmental of the inner mitochondrial matrix is reasonably the result of respiratory-chain superoxide radicals reacting with water and producing hydroxyl anions.  相似文献   

7.
Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ~4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (~75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.  相似文献   

8.
Accompanying the autoxidation of hydroxylamine at pH 10.2, nitroblue tetrazolium was reduced and nitrite was produced in the presence of EDTA. The rate of autoxidation was negligible below pH 8.0, but sharply increased with increasing pH. The reduction of nitroblue tetrazolium was inhibited by superoxide dismutase, indicating the participation of superoxide anion radical in the autoxidation. Hydrogen peroxide stimulated the autoxidation and superoxide dismutase inhibited the hydrogen peroxide-induced oxidation, results which suggest the participation of hydrogen peroxide in autoxidation and in the generation of superoxide radical. An assay for superoxide dismutase using autoxidation of hydroxylamine is described.  相似文献   

9.
Superoxide is a key component of the antibacterial weaponry of phagocytes. Presumably, for this reason, strains of Salmonella typhimurium express a periplasmic superoxide dismutase (SOD) that is essential for full virulence. Because most anions cannot easily penetrate lipid membranes, it is thought that the phagosomal superoxide either damages an unknown target on the bacterial surface or reacts with nitric oxide to form peroxynitrite (HOONO), a toxic oxidant that can freely enter bacteria. However, in this study, we tested whether superoxide itself could penetrate membranes. Superoxide that was generated at high pH (>7.5) very slowly reduced cytochrome c that was encapsulated inside lipid vesicles. It did so much more quickly at lower pH (<7). Under the latter conditions, more superoxide was protonated and uncharged (HO2*), and the penetrance of superoxide was proportional to the concentration of this species. The permeability coefficient of HO2* was determined to be 9 x 10(-4) cm sec(-1), just slightly lower than that of water and far higher than the value of the anionic form (O2-, <10(-7) cm sec(-1). When Escherichia coli mutants that lack periplasmic SOD were exposed to super-oxide at pH 6.5, cytosolic fumarase B was damaged. Damage was minimal at higher pH or in strains that contained periplasmic SOD. Thus, in the acidic phagolysosome, superoxide may be able to penetrate and attack cytosolic targets of captive bacteria. This process may contribute to the potency of the oxidative burst. One role of periplasmic SOD may be to avert this damage. In contrast, periplasmic SOD was ineffective at lowering the extracellular super-oxide concentration and, therefore, may have little impact upon HOONO formation.  相似文献   

10.
1. An electron-spin-resonance signal with g( parallel)2.08 and g( perpendicular)2.00 is observed by the rapid-freezing technique during the oxidation of substrates by molecular oxygen catalysed by xanthine oxidase at pH10. 2. The intensity of this signal is shown to depend on oxygen rather than on enzyme concentration, indicating that it is due to an oxygen free radical and not to the enzyme. 3. The same species is shown to be produced in the reaction at pH10 between hydrogen peroxide and periodate ions. Studies with this system have facilitated comparison of the properties of the oxygen radical with data in the literature on the products of pulse radiolysis of oxygenated water over a wide pH range. 4. It is concluded that the species observed is the superoxide ion, O(2) (-), and that the stability of this ion is greatly increased in alkaline solution. A mechanism explaining the alkaline stability is proposed. 5. The importance of O(2) (-) in the enzymic reaction is discussed.  相似文献   

11.
Convenient assays for superoxide dismutase have necessarily been of the indirect type. It was observed that among the different methods used for the assay of superoxide dismutase in rat liver homogenate, namely the xanthine-xanthine oxidase ferricytochromec, xanthine-xanthine oxidase nitroblue tetrazolium, and pyrogallol autoxidation methods, a modified pyrogallol autoxidation method appeared to be simple, rapid and reproducible. The xanthine-xanthine oxidase ferricytochromec method was applicable only to dialysed crude tissue homogenates. The xanthine-xanthine oxidase nitroblue tetrazolium method, either with sodium carbonate solution, pH 10.2, or potassium phosphate buffer, pH 7·8, was not applicable to rat liver homogenate even after extensive dialysis. Using the modified pyrogallol autoxidation method, data have been obtained for superoxide dismutase activity in different tissues of rat. The effect of age, including neonatal and postnatal development on the activity, as well as activity in normal and cancerous human tissues were also studied. The pyrogallol method has also been used for the assay of iron-containing superoxide dismutase inEscherichia coli and for the identification of superoxide dismutase on polyacrylamide gels after electrophoresis.  相似文献   

12.
Kim JS  Sung MH  Kho DH  Lee JK 《Journal of bacteriology》2005,187(17):5984-5995
The manganese-containing superoxide dismutase (MnSOD) of Vibrio vulnificus, normally detected after the onset of the stationary phase, is expressed during the lag that immediately follows the transfer of cells grown exponentially to a fresh medium acidified to pH 5.0, whereas Fe-containing SOD is constitutively expressed. The signal triggering the growth lag and MnSOD induction therein is not low pH but intracellular superoxide accumulated under these conditions, since addition of a superoxide scavenger not only shortened the lag but also abrogated the MnSOD induction. If the lysine decarboxylase reaction proceeds in the presence of sufficient lysine, the broth is rapidly neutralized to abolish the generation of oxidative stress. Accordingly, the acid tolerance response was examined without the addition of lysine. SoxR regulates MnSOD induction. Lack of MnSOD caused by mutations in soxR or sodA resulted in low tolerance to low pH. The fur mutant derepressing MnSOD showed better tolerance than the wild type. Thus, an increase in total cytosolic SOD activity through MnSOD induction is essential for the cell to withstand the acid challenge. The contribution of cuprozinc-containing SOD to acid tolerance is not significant compared with those of cytosolic SODs.  相似文献   

13.
Summary

Using various superoxide generating systems and nitroblue tetrazolium or cytochrome c as superoxide detector molecules it is possible to assess the superoxide dismutase activity of proteins. Intact antibodies raised to different antigens, the Fab’ fragment of anti-TNF [M632] and well-characterized recombinant Fv fragments of the murine antibody NQ11.7.22 appear to possess superoxide dismutase (SOD)-like activity.

Kinetic characteristics of the SOD-like activity of NQ11.7.22-Fv fragments suggest an enzymatic property and these fragments behave in an analogous manner to human erythrocyte Cu-Zn SOD. Furthermore, the SOD-like activity of the NQ11.7.22-Fv fragment is affected by certain single-point mutations in the amino acid composition and has a pH optimum of 6.2–6.6 which is unlike Cu-Zn SOD (pH 7.8–8.2). A change in tyrosine at the 32 position in the heavy chain and histidine at position 27 of the light chain of the NQ11.7.22-Fv fragment results in a profound reduction in SOD-like activity. Tyrosine at the 32 position in the heavy chain is known to play a significant role in antigen binding suggesting that the SOD-like activity occurs at the antigen-binding site itself. Single-point mutations at the periphery of the antigen combining site on the NQ11.7.22-Fv fragment had little or no effect on SOD-like activity.

Further studies show that immunoglobin (lgG-1), a commercially available murine monoclonal antibody, can also enhance the generation of hydrogen peroxide, the product of superoxide dismutation, when present in superoxide producing systems. The generation of hydrogen peroxide was increased by low pH (pH 6.25) with lgG-1 but reduced with Cu-Zn SOD.  相似文献   

14.
We have utilized a commercially available, computer-driven stopped-flow spectrophotometer to rapidly measure the self-dismutation or catalyzed decay of superoxide in aqueous buffers. In the self-dismutation assay, a dimethyl sulfoxide solution of superoxide is mixed in less than 2 ms with an aqueous buffer. The decay of superoxide is monitored directly by its absorbance at 245 nm and the data is processed by computer. By careful purification of the water and the use of metal-free buffers, a decay of superoxide that fits second-order kinetics is obtained without using metal ion chelators in the buffer. The second-order rate constant for superoxide decreased with increasing pH and decreased by a factor of 3.3 by using D2O in place of H2O in the buffer. The rapid mixing time makes it possible to determine rate constants for active superoxide dismutase catalysts at a pH as low as 7. A first-order decay of superoxide is obtained when the aqueous buffer contains bovine Cu/Zn superoxide dismutase or aquo copper(II), which are known catalysts of superoxide dismutation. The rate of superoxide decay was established to be first-order in catalyst. The catalytic rate constant for bovine Cu/Zn superoxide dismutase was determined to be 2.3 x 10(9) M-1 s-1 in H2O and D2O-based buffers and was independent of pH over the range 7-9. Aquo copper(II) gave a catalytic rate constant of 1.2 x 10(8) M-1 s-1, but was ineffective in the presence of EDTA. The catalytic rate constants obtained by stopped-flow kinetics are in excellent agreement with studies carried out by the direct method of pulse radiolysis.  相似文献   

15.
Reactions of superoxide-crown ether complex with curcumin have been studied in acetonitrile. Optical absorption spectra showed that curcumin on reaction with superoxide forms a blue color intermediate absorbing at 560 nm, which subsequently decayed in a few hours with the development of the absorption band corresponding to the parent curcumin. The regeneration was 100% at low superoxide concentrations (1:1, or 1:2 or 1:3 of curcumin:superoxide) but reduced to 60% at high superoxide concentration (>1:5). The regeneration of curcumin is confirmed by HPLC analysis. Stopped-flow studies in acetonitrile following either the decay of parent curcumin at 420 nm or formation of 560 nm absorption have been used to determine the rate constant for the reaction of superoxide with curcumin. EPR studies confirmed the disappearance of characteristic superoxide signal in presence of curcumin with the formation of new featureless signal with g = 2.0067. Based on these studies it is concluded that at low superoxide concentrations curcumin effectively causes superoxide dismutation without itself undergoing any chemical change. At higher concentrations of superoxide, curcumin inhibits superoxide activity by reacting with it.  相似文献   

16.
G D Lawrence  D T Sawyer 《Biochemistry》1979,18(14):3045-3050
Bovine erythrocyte superoxide dismutase and two manganese-containing superoxide dismutases have been reduced by the indirect coulometric titration method with methylviologen as the mediator-titrant. On the basis of the titration data the manganese-containing superoxide dismutases contain 1 g-atom of metal per mol of enzyme (dimer). E0' = +0.31 V for the enzyme from Escherichia coli which exhibits a complicated pH dependence above neutral pH. The Bacillus stearothermophilus manganese-containing enzyme has an E0' = +0.26 V and delta Em/pH is 50 mV. Bovine erythrocyte superoxide dismutase exhibits anomalous behavior in the coulometric titration curves, which is indicative of two nonequivalent copper centers in the enzyme. Addition K3Fe(CN)6 or K2IrCl6 to the enzyme solution, prior to coulometric titration, indicates that these anions bind preferentially to one of the copper centers.  相似文献   

17.
The mitochondria play essential roles in both intracellular calcium and reactive oxygen species signaling.As a newly discovered universal and fundamental mitochondrial phenomenon,superoxide flashes reflect transient bursts of superoxide production in the matrix of single mitochondria.Whether and how the superoxide flash activity is regulated by mitochondrial calcium remain largely unknown.Here we demonstrate that elevating mitochondrial calcium either by the calcium ionophore ionomycin or by increasing the bathing calcium in permeabilized HeLa cells increases superoxide flash incidence,and inhibition of the mitochondrial calcium uniporter activity abolishes the flash response.Quantitatively,the superoxide flash incidence is correlated to the steady-state mitochondrial calcium elevation with 1.7-fold increase per 1.0?F/F0 of Rhod-2 signal.In contrast,large mitochondrial calcium transients(e.g.,peak△F/F0~2.8,duration~2 min)in the absence of steady-state elevations failed to alter the flash activity.These results indicate that physiological levels of sustained,but not transient,mitochondrial calcium elevation acts as a potent regulator of superoxide flashes,but its mechanism of action likely involves a multi-step,slow-onset process.  相似文献   

18.
Extracellular superoxide dismutase   总被引:1,自引:0,他引:1  
The extracellular space is protected from oxidant stress by the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), which is highly expressed in selected tissues including blood vessels, heart, lungs, kidney and placenta. EC-SOD contains a unique heparin-binding domain at its carboxy-terminus that establishes localization to the extracellular matrix where the enzyme scavenges superoxide anion. The EC-SOD heparin-binding domain can be removed by proteolytic cleavage, releasing active enzyme into the extracellular fluid. In addition to protecting against extracellular oxidative damage, EC-SOD, by scavenging superoxide, preserves nitric oxide bioactivity and facilitates hypoxia-induced gene expression. Loss of EC-SOD activity contributes to the pathogenesis of a number of diseases involving tissues with high levels of constitutive extracellular superoxide dismutase expression. A thorough understanding of the biological role of EC-SOD will be invaluable for developing novel therapies to prevent stress by extracellular oxidants.  相似文献   

19.
Huang VW  Emerson JP  Kurtz DM 《Biochemistry》2007,46(40):11342-11351
Stopped-flow mixing of the Desulfovibrio vulgaris two-iron superoxide reductase (2Fe-SOR) containing the ferrous active site with superoxide generates a dead time intermediate whose absorption spectrum is identical to that of a putative ferric-hydroperoxo intermediate previously observed by pulse radiolysis. The dead time intermediate is shown to be a product of reaction with superoxide and to be generated at a much higher proportion of active sites than by pulse radiolysis. This intermediate decays smoothly to the resting ferric active site ( approximately 30 s-1 at 2 degrees C and pH 7) with no other detectable intermediates. Deuterium isotope effects demonstrate that solvent proton donation occurs in the rate-determining step of dead time intermediate decay and that neither of the conserved pocket residues, Glu47 or Lys48, functions as a rate-determining proton donor between pH 6 and pH 8. Fluoride, formate, azide, and phosphate accelerate decay of the dead time intermediate and for azide or fluoride lead directly to ferric-azido or -fluoro complexes of the active site, which inhibit Glu47 ligation. A solvent deuterium isotope effect is observed for the azide-accelerated decay, and the decay rate constants are proportional to the concentrations and pKa values of HX (X- = F-, HCO2-, N3-). These data indicate that the protonated forms of the anions function analogously to solvent as general acids in the rate-determining step. The results support the notion that the ferrous SOR site reacts with superoxide by an inner sphere process, leading directly to the ferric-hydroperoxo intermediate, and demonstrate that the decay of this intermediate is subject to both specific- and general-acid catalysis.  相似文献   

20.
Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase.   总被引:69,自引:0,他引:69  
Peroxynitrite (ONOO-), the reaction product of superoxide (O2-) and nitric oxide (NO), may be a major cytotoxic agent produced during inflammation, sepsis, and ischemia/reperfusion. Bovine Cu,Zn superoxide dismutase reacted with peroxynitrite to form a stable yellow protein-bound adduct identified as nitrotyrosine. The uv-visible spectrum of the peroxynitrite-modified superoxide dismutase was highly pH dependent, exhibiting a peak at 438 nm at alkaline pH that shifts to 356 nm at acidic pH. An equivalent uv-visible spectrum was obtained by Cu,Zn superoxide dismutase treated with tetranitromethane. The Raman spectrum of authentic nitrotyrosine was contained in the spectrum of peroxynitrite-modified Cu,Zn superoxide dismutase. The reaction was specific for peroxynitrite because no significant amounts of nitrotyrosine were formed with nitric oxide (NO), nitrogen dioxide (NO2), nitrite (NO2-), or nitrate (NO3-). Removal of the copper from the Cu,Zn superoxide dismutase prevented formation of nitrotyrosine by peroxynitrite. The mechanism appears to involve peroxynitrite initially reacting with the active site copper to form an intermediate with the reactivity of nitronium ion (NO2+), which then nitrates tyrosine on a second molecule of superoxide dismutase. In the absence of exogenous phenolics, the rate of nitration of tyrosine followed second-order kinetics with respect to Cu,Zn superoxide dismutase concentration, proceeding at a rate of 1.0 +/- 0.1 M-1.s-1. Peroxynitrite-mediated nitration of tyrosine was also observed with the Mn and Fe superoxide dismutases as well as other copper-containing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号