首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2.   总被引:119,自引:0,他引:119  
A Mayeda  A R Krainer 《Cell》1992,68(2):365-375
When messenger RNA precursors (pre-mRNAs) containing alternative 5' splice sites are spliced in vitro, the relative concentrations of the heterogeneous ribonucleoprotein (hnRNP) A1 and the essential splicing factor SF2 precisely determine which 5' splice site is selected. In general, an excess of hnRNP A1 favors distal 5' splice sites, whereas an excess of SF2 results in utilization of proximal 5' splice sites. The regulation of these antagonistic activities may play an important role in the tissue-specific and developmental control of gene expression by alternative splicing.  相似文献   

2.
The three subunits of human splicing factor SF3a are essential for the formation of the functional 17S U2 snRNP and prespliceosome assembly in vitro. RNAi-mediated depletion indicates that each subunit is essential for viability of human cells. Knockdown of single subunits results in a general block in splicing strongly suggesting that SF3a is a constitutive splicing factor in vivo. In contrast, splicing of several endogenous and reporter pre-mRNAs is not affected after knockdown of SF1, which functions at the onset of spliceosome assembly in vitro and is essential for cell viability. Thus, SF1 may only be required for the splicing of a subset of pre-mRNAs. We also observe a reorganization of U2 snRNP components in SF3a-depleted cells, where U2 snRNA and U2-B' are significantly reduced in nuclear speckles and the nucleoplasm, but still present in Cajal bodies. Together with the observation that the 17S U2 snRNP cannot be detected in extracts from SF3a-depleted cells, our results provide further evidence for a function of Cajal bodies in U2 snRNP biogenesis.  相似文献   

3.
We report here that the apoptosis-promoting protein TIA-1 regulates alternative pre-mRNA splicing of the Drosophila melanogaster gene male-specific-lethal 2 and of the human apoptotic gene Fas. TIA-1 associates selectively with pre-mRNAs that contain 5' splice sites followed by U-rich sequences. TIA-1 binding to the U-rich stretches facilitates 5' splice site recognition by U1 snRNP. This activity is critical for activation of the weak 5' splice site of msl-2 and for modulating the choice of splice site partner in Fas. Structural and functional similarities with the Saccharomyces cerevisiae splicing factor Nam8 suggest striking evolutionary conservation of a mechanism of pre-mRNA splicing regulation that controls biological processes as diverse as meiosis in yeast, dosage compensation in fruit flies, or programmed cell death in humans.  相似文献   

4.
Luco RF  Allo M  Schor IE  Kornblihtt AR  Misteli T 《Cell》2011,144(1):16-26
Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.  相似文献   

5.
6.
Neuronal regulation of alternative pre-mRNA splicing   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
10.
11.
Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain.  相似文献   

12.
Neurofibromatosis type 1 (NF1) is one of the most common heritable autosomal dominant disorders. Alternative splicing modulates the function of neurofibromin, the NF1 gene product, by inserting the in-frame exon 23a into the region of NF1 mRNA that encodes the GTPase-activating protein-related domain. This insertion, which is predominantly skipped in neurons, reduces the ability of neurofibromin to regulate Ras by 10-fold. Here, we report that the neuron-specific Hu proteins control the production of the short protein isoform by suppressing inclusion of NF1 exon 23a, while TIA-1/TIAR proteins promote inclusion of this exon. We identify two binding sites for Hu proteins, located upstream and downstream of the regulated exon, and provide biochemical evidence that Hu proteins specifically block exon definition by preventing binding of essential splicing factors. In vitro analyses using nuclear extracts show that at the downstream site, Hu proteins prevent binding of U1 and U6 snRNPs to the 5′ splice site, while TIAR increases binding. Hu proteins also decrease U2AF binding at the 3′ splice site located upstream of exon 23a. In addition to providing the first mechanistic insight into tissue-specific control of NF1 splicing, these studies establish a novel strategy whereby Hu proteins regulate RNA processing.  相似文献   

13.
The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5′ splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3′ splice site. The 5′ and 3′ splice site complexes are thought to be joined together by protein–protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF65. Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5′ and 3′ splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival.  相似文献   

14.
Alternative splicing of fibronectin pre-mRNA at the ED-A region has been shown to be regulated in a tissue- and developmental stage-specific manner. We investigated the splicing pattern at this region in malignant and nonmalignant human liver tissues and found that the relative population of the fibronectin mRNA containing the ED-A sequence is markedly increased in malignant liver tumors. Nontumorous liver tissues including those with chronic hepatitis and cirrhosis did not show any significant change in the alternative splicing at the ED-A region. It was also found that the increased expression of the ED-A-containing fibronectin mRNA closely correlates with the occurrence of portal vein tumor thrombus and intrahepatic metastasis, which are two characteristic features of invasive liver tumors. These results indicate that tissue-specific alternative splicing of fibronectin mRNA is modified in human liver cancer and raise a possibility that the putative molecular machinery governing alternative RNA splicing of not only fibronectin but also other cellular proteins is deregulated in malignant human tumors.  相似文献   

15.
Regulation of apoptosis by alternative pre-mRNA splicing   总被引:2,自引:0,他引:2  
Apoptosis, a phenomenon that allows the regulated destruction and disposal of damaged or unwanted cells, is common to many cellular processes in multicellular organisms. In humans more than 200 proteins are involved in apoptosis, many of which are dysregulated or defective in human diseases including cancer. A large number of apoptotic factors are regulated via alternative splicing, a process that allows for the production of discrete protein isoforms with often distinct functions from a common mRNA precursor. The abundance of apoptosis genes that are alternatively spliced and the often antagonistic roles of the generated protein isoforms strongly imply that alternative splicing is a crucial mechanism for regulating life and death decisions. Importantly, modulation of isoform production of cell death proteins via pharmaceutical manipulation of alternative splicing may open up new therapeutic avenues for the treatment of disease.  相似文献   

16.
17.
Alternative splicing of fibronectin pre-mRNA at two distinct regions, termed ED-A and IIICS, was investigated with human adult and fetal tissues by the nuclease S1 protection assay. A clear tissue specificity was observed in the splicing pattern at the ED-A region. More ED-A+ than ED-A- mRNAs were identified in lung, whereas ED-A- mRNAs were predominantly expressed in liver. Endometrium contained nearly equal amounts of ED-A+ and ED-A- mRNAs. The splicing pattern at the ED-A region was also different between adult and fetal liver but not between adult and fetal lung. Tissue type specific splicing was also observed at the IIICS region. Although the mRNA species containing the complete IIICS sequence comprised 40-65% of the total fibronectin mRNAs irrespective of tissue types, expression of the mRNA species lacking a part or all of the IIICS sequence was more pronounced in adult liver than in other tissues including fetal liver. These results strongly suggest that the alternative splicing of fibronectin pre-mRNA in vivo is regulated in a tissue type specific manner at both the ED-A and IIICS regions and that it is developmentally regulated in liver but not in lung. On the basis of these and other observations reported previously, a possibility that a part of the fibronectins synthesized and secreted by hepatocytes is deposited in the tissue matrix is discussed.  相似文献   

18.
The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1''s role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds.  相似文献   

19.
mRNA前体选择性剪接的研究进展   总被引:3,自引:0,他引:3  
延锦春  陈誉华  宋今丹  陈澄 《生命科学》2002,14(3):150-152,185
mRNA前体的选择性剪接(又称可变剪/拼接)是真核生物的一种基本而又重要的调控机制,它精细协调基因的功能,高效调节基因的定量表达以及蛋白功能的多样化,影响主要发育方向的决定,对细胞的分化、发育、生理功能和病理状态都有重要意义。选择性剪接与许多人类疾病密切相关。目前在生物信息学领域已有选择性剪接数据库的构建,用于选择性剪接的信息存储和处理。  相似文献   

20.
The essential splicing factor ASF/SF2 activates or represses splicing depending on where on the pre-mRNA it binds. We have shown previously that ASF/SF2 inhibits adenovirus IIIa pre-mRNA splicing by binding to an intronic repressor element. Here we used MS2-ASF/SF2 fusion proteins to show that the second RNA binding domain (RBD2) is both necessary and sufficient for the splicing repressor function of ASF/SF2. Furthermore, we show that the completely conserved SWQDLKD motif in ASF/SF2-RBD2 is essential for splicing repression. Importantly, this heptapeptide motif is unlikely to be directly involved in RNA binding given its position within the predicted structure of RBD2. The activity of the ASF/SF2-RBD2 domain in splicing was position-dependent. Thus, tethering RBD2 to the IIIa intron resulted in splicing repression, whereas RBD2 binding at the second exon had no effect on IIIa splicing. The splicing repressor activity of RBD2 was not unique to the IIIa pre-mRNA, as binding of RBD2 at an intronic position in the rabbit beta-globin pre-mRNA also resulted in splicing inhibition. Taken together, our results suggest that ASF/SF2 encode distinct domains responsible for its function as a splicing enhancer or splicing repressor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号