首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for reproductive toxicity of an antisense oligonucleotide designed to inhibit ICAM-1 was evaluated as part of the safety assessment for this compound. The human active ICAM-1 inhibitor (ISIS 2302) is not pharmacologically active in rabbits. Female rabbits were treated once daily on Day 6 through 18 of gestation. Rabbits were treated with 0, 1, 3, and 9 mg/kg ISIS 2302 by daily i.v. injection. Reproductive indices evaluated included estrus cycling, litter parameters, fetal development, and fetal body weight. Concentrations of oligonucleotide in plasma following the last dose, and in selected maternal target organs, placenta, and fetal tissues at scheduled necropsy were also measured. Maternal toxicity was evident as a decreased maternal body weight gain, decreased food consumption, and scant feces at doses > or =3 mg/kg. Increased spleen to body weight ratio and increased mononuclear cell infiltrates were indicative of a proinflammatory effect of ISIS 2302 at the 9 mg/kg dose level. Despite the maternal toxicity, there were no changes in litter parameters or fetal development in rabbits treated with ISIS 2302. The only change was a decrease in fetal body weight at the 9 mg/kg dose level, which was attributed to the maternal toxicity observed. Maternal liver and kidney contained dose-dependent concentrations of oligonucleotide, but there was relatively little or no oligonucleotide measured in placenta or fetal tissues. Thus, there was no dose-dependent exposure and maternal toxicity to ISIS 2302, but no reproductive toxicity in rabbits, and exposure of fetus or pups is negligible.  相似文献   

2.
The potential for reproductive toxicity of an antisense oligonucleotide designed to inhibit ICAM-1 was evaluated as part of the safety assessment for this compound. Since antisense compounds are often specific to the species in which they are intended to work, both the human and murine active ICAM-1 inhibitors were tested (ISIS 2302 and ISIS 3082, respectively). Male and female mice were treated prior to cohabitation, through cohabitation, gestation, delivery, and weaning. Mice were treated with 0, 3, 6, and 12 mg/kg ISIS 2302 or ISIS 3082 by daily i.v. injection. Reproductive indices evaluated included estrus cycling, sperm count and motility, fertility, litter parameters, fetal development, delivery, fetal body weight, lactation, and weaning. Behavioral assessment and reproductive capacity of the F1 generation mice was assessed on selected animals. Concentrations of oligonucleotide in selected maternal target organs, placenta, fetal tissues, and expressed milk were also measured. There were no changes in reproductive performance, litter parameters, fetal development, or postnatal development in mice treated with either ISIS 2302 or ISIS 3082. Maternal liver and kidney contained dose-dependent concentrations of oligonucleotide, but there was relatively little or no oligonucleotide measured in placenta, fetal tissues, or expressed milk. Neither the human nor murine-specific antisense inhibitor of ICAM-1 produced any reproductive toxicity in mice, and exposure of fetus or pups was negligible.  相似文献   

3.
Vasoactive Intestinal Peptide (VIP) is a 28-amino-acid putative neurotransmitter that may have a role in the regulation of myometrial blood flow and uterine contractility. The chronically cannulated fetal sheep preparation was used to examine the fetal clearance and placental transfer of VIP. Metabolic Clearance Rate (MCR) and placental transfer of VIP were measured by alternate steady-state infusion of VIP into the mother and fetus. Plasma concentrations of VIP were measured by radioimmunoassay. MCR was similar in the pregnant (45 +/- 10 ml/kg/min) and nonpregnant ewes (35 +/- 5 ml/kg/min). However, compared to both pregnant and nonpregnant ewes, fetal MCR was significantly increased at 77 +/- 15 ml/kg/min, indicating highly developed clearance mechanisms in the fetus. VIP did not cross the placenta in either direction. Both the placenta and fetal liver metabolized VIP and contributed to the elevated fetal clearance of VIP. The results show that VIP in fetal tissue is unlikely to influence maternal uterine activity with any VIP-mediated effects emanating from maternal and/or placental sources.  相似文献   

4.
BACKGROUND: The purpose of this study was to evaluate the effects of lasofoxifene, a selective estrogen receptor modulator (SERM), on rat and rabbit fetal development. METHODS: Lasofoxifene was administered orally to rats (1, 10, 100 mg/kg) between gestation days (GD) 6-17, and in rabbits (0.1, 1, 3 mg/kg) between GD 6-18. Maternal body weight and food consumption were monitored throughout pregnancy. Fetuses were delivered by Cesarean section on GD 21 in rats, and GD 28 in rabbits, to evaluate fetal viability, weight, and morphology. Drug concentrations in maternal plasma were measured in a separate cohort of animals at several time points commencing on GD 17 (rats) and 18 (rabbits). On GD 18 (rat) and GD 19 (rabbit) drug concentrations were measured in maternal plasma and in fetal tissue 2 hr post dosing to determine the fetal to maternal drug ratio. RESULTS: In rats, there were dose-related declines in maternal weight gain and food consumption. Post implantation loss was significantly increased at dosages of 10 and 100 mg/kg, and the number of viable fetuses was decreased at 100 mg/kg. The placental weights increased, whereas fetal weights decreased in a dose-dependent manner. Lasofoxifene-related teratologic findings were noted at 10 and 100 mg/kg and included imperforate anus with hypoplastic tails, dilatation of the ureters and renal pelvis, misaligned sternebrae, hypoflexion of hindpaw, wavy ribs, and absent ossification of sternebrae. In rabbits, neither maternal weight gain nor food consumption were affected during treatment. Between GD 26-28, there was a dose-dependent increased incidence of red discharge beneath the cages. At 1 and 3 mg/kg, resorptions and post-implantation loss increased. There were no significant external or visceral effects, but 3 mg/kg there was an increased incidence of supernumerary ribs. Although the maternal plasma Cmax and AUC(0-24) were dose-dependent, the exposures in the rat were many orders of magnitude greater than in the rabbit even for the same 1 mg/kg dose. The single time point fetal/maternal drug ratio was higher in the rat (1.3-0.78) than in the rabbit (0.21-0.16). CONCLUSION: In general, both maternal and fetal effects of lasofoxifene were similar to those reported with other SERMs. Although the incidence or severity of these effects was, in some instances, greater in the rat than in the rabbit, the doses and the resultant maternal and fetal exposures were many orders of magnitude higher in the rat, suggesting the rabbit to be more sensitive to the toxicological effects of lasofoxifene.  相似文献   

5.
BACKGROUND: Intetumumab is a human IgG1 anti‐αv‐integrin monoclonal antibody that inhibits angiogenesis. Integrin binding and angiogenesis are important in reproduction including fertilization, implantation, and embryofetal development. These studies were designed to determine the pharmacological relevance of the rabbit for the evaluation of potential effects on embryofetal development and to evaluate the placental transfer of intetumumab in rabbits. METHODS: In vitro pharmacology studies evaluated the binding of intetumumab to rabbit cells and the inhibition of vessel sprouting from rabbit aorta. For the evaluation of placental transfer, pregnant rabbits (8/group) were injected intravenously with intetumumab 50 or 100 mg/kg every 2 days from Gestation Day (GD)7 to GD19. Maternal sera, fetal homogenates/sera, and amniotic fluid were collected at necropsy on GD19 or GD28 for evaluation of intetumumab concentrations. Clinical condition of the dams was monitored and fetuses were screened for abnormalities. RESULTS: Intetumumab (5–40 µg/mL) inhibited aortic cell adhesion to vitronectin and vessel sprouting from rabbit aortic rings. Immunohistochemical staining of rabbit tissues demonstrated binding of intetumumab to placenta. Administration of intetumumab to pregnant rabbits was well tolerated by the dams and the fetuses did not show major abnormalities. Fetal exposure to intetumumab relative to maternal exposure was <0.1% on GD19 and 100–130% on GD29. CONCLUSIONS: The rabbit is a pharmacologically relevant species for evaluation of potential developmental effects of intetumumab. Intetumumab crosses the rabbit placenta during the fetal period (GD 19–28). Birth Defects Res (Part B) 89:116–123, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
妊娠期给予可卡因对母体和胎儿的影响: 小鼠动物模型   总被引:1,自引:0,他引:1  
Song J  Guan XW  Ren JQ  He W 《生理学报》2002,54(4):342-348
探讨妊娠期给予可卡因对母体和胎儿的影响。妊娠小鼠分为3组:可卡因注射组(每日两次注射盐酸可卡因10mg/kg,COC);盐水对照组(每日两次注射生理盐水10ml/kg,SAL);饮食对照组(每日两次注射生理盐水10ml/kg,饮食参考可卡因给药组,SPF)。用高压液相色谱分析法检测胎鼠血中可卡因浓度及纹状体中神经递质多巴胺和5-羟色胺的含量,并结合HE染色观察胎鼠肝脏和胎盘的形态学改变。尽管COC和SPF组母鼠摄食量和体重增长量均降低,但是仅仅COC组胎鼠的体重和脑重减少。高压液相色谱分析结果显示,在COC组胎鼠血浆中可检测出可卡因,并伴有纹状体神经递质含量的异常增高。同时,也观察到了COC组胎盘和肝脏的形态学变化。本研究表明,妊娠期给予可卡因能引起妊娠母体营养不良,子代脑、肝脏和胎盘发育异常;可卡因引起的胎儿发育异常是由可卡因的毒性作用而不是母体营养不良产生的。  相似文献   

7.
BACKGROUND: Carbon black oil (CBO) is a refinery side-stream product used to produce asphalt and other commercial products. CBO contains several classes of hydrocarbons, several of which are known to exhibit systemic and gestational toxicities, making this mixture a candidate for causing reproductive toxicity. METHODS: Swiss-Webster mice were administered CBO (300, 350, 400 mg/kg/day) via oral gavage in a dosage volume of 10 microl/g body weight on gestation days (GD) 6-15. Uterine contents were evaluated on GD 18. RESULTS: Treatment with CBO at all dosage levels resulted in a high frequency of maternal clinical symptoms and a decrease in maternal weight gain. Decreased fetal viability was observed, manifested as a decrease in viable implants and, in a high percentage of treated dams, as early resorption of the entire litter. A significant reduction in fetal weight was also observed. However, neither structural malformations nor developmental delays in ossification were observed in any of the living offspring. To minimize maternal toxicity, the dosage range was lowered (100, 200, 300 mg/kg/day), and the concentration was adjusted such that the volume administered to each dam was decreased by 20%. In this trial, the only maternal effect observed was an increase in maternal liver weight at 200 and 300 mg/kg. The fetal lethality effects observed previously were reduced substantially. Nevertheless, the frequency of resorption among all treatment groups was higher statistically than in controls. CONCLUSIONS: These data support the hypothesis that CBO is reproductively toxic in Swiss-Webster mice at oral doses of >/=100 mg/kg/day.  相似文献   

8.
PPD10558 is an orally active, lipid‐lowering 3–hydroxy‐3‐methylglutaryl coenzyme A (HMG‐CoA) reductase inhibitor (statin) being developed as a treatment for hypercholesterolemia in patients who have not been able to tolerate statins because of statin‐associated myalgia. We have studied the potential developmental toxicity effects of PPD10558 in pregnant rats and rabbits given daily oral doses during the period of organogenesis. Rats were dosed with 0, 20, 80, or 320 mg/kg/day from Gestation Day (GD) 6 to 17 and rabbits received dose levels of 0, 12.5, 25, or 50 mg/kg/day from GD 6 to 18. Additional groups in both studies served as toxicokinetic animals and received the PPD10558 in the same manner as the main study groups at the same dose levels. Blood samples were collected from toxicokinetic animals at designated time points on GD 6 and 17 in rats and GD 6 and 18 in rabbits. Fetal exposure in rats was assessed on GD 20. Maternal and developmental parameters were evaluated in rats and rabbits on GD 20 and GD 29, respectively. No maternal and developmental toxicity was observed at any of the dose levels used in the rat study. Evidence of fetal exposure was determined in fetal plasma with mean fetal concentrations of PPD10558 and the metabolite (PPD11901) found to be between 1 and 6% of the mean maternal concentrations. In rabbits, marked maternal toxicity including mortality (eight deaths; 1 dose at 25 and 7 at 50 mg/kg/day), abortions (2 at 25 mg/kg/day and 6 at 50 mg/kg/day) and reduction in gestation body weight, gestation body weight changes and decreased food consumption were observed. In addition, fetal body weights of the combined sexes were significantly reduced at 50 mg/kg/day in comparison with the controls. Mean peak exposure (Cmax) and total exposure (AUC(0–24)) of PPD11901 in both rats and rabbits were higher than that of PPD10558 on GD 6 and GD 17 at each of the three dose levels.. Based on the results of these studies, the no observed adverse effect level (NOAEL) for maternal and developmental toxicity in rats was considered to be ≥320 mg/kg/day, the highest dose level used in the study. The NOAEL for maternal and developmental toxicity in rabbits was 12.5 mg/kg/day and 25 mg/kg/day, respectively.  相似文献   

9.
BACKGROUND: The overall goal of human immunodeficiency virus (HIV) therapy during pregnancy is to maintain maternal health and reduce the probability of vertical transmission during gestation and delivery, while keeping toxicity risks low. Azidothymidine (AZT) is currently recommended for pregnant women infected with HIV; however, many pregnant women are unable to tolerate AZT because of toxicity. In the present study, the placental transfer and fetal accumulation of the anti-HIV compound 2',3'-didehydro-3'-deoxythymidine (d4T) and its active (triphosphorylated) and inactive (thymine and beta-aminoisobutyric acid) metabolites were examined at steady state in late-term rhesus macaques. METHODS: On the day of the hysterotomy, the mother was administered an intravenous loading dose of d4T, followed by a 3-hr steady-state intravenous infusion that also included [(3)H]d4T as a tracer. After 3 hr of infusion, the fetus was delivered by cesarean section under halothane/N(2)O anesthesia. Plasma, amniotic fluid, and tissues were analyzed for d4T and its inactive metabolites by HPLC; tissue samples were analyzed for d4T and active (phosphorylated) metabolites by strong anion-exchange HPLC. RESULTS: Maternal steady-state plasma concentrations of d4T were 1-2 microg/ml, with a fetal-to-maternal plasma ratio of 0.85 +/- 0.09. The fetal tissue distribution of radioactivity was highest in the kidney and lowest in the brain. D4T, thymine, and beta-aminoisobutyric acid were detected in all fetal tissues examined. CONCLUSIONS: Our data indicate that d4T readily crosses the placenta and is present in the fetus as parent compound or its inactive metabolites after maternal infusion. Although fetal plasma concentrations of d4T were similar to clinical d4T concentrations, no phosphorylated metabolites were detected. Teratology 62:93-99, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

10.
BACKGROUND: Lenalidomide, a thalidomide analog, is indicated for treatment of patients with deletion-5q myelodysplastic syndromes or multiple myeloma. NZW rabbits were used because of sensitivity to thalidomide's teratogenicity. METHODS: Range-finding and pulse-dosing studies preceded a full developmental toxicity study in New Zealand white (NZW) rabbits (25/group) given lenalidomide (0, 3, 10, or 20 mg/kg/day) or thalidomide (180 mg/kg/day) by stomach tube on gestation days (GD) 7-19. Clinical signs, body weights, and feed consumption were recorded daily from GD 7. On GD 29, standard maternal necropsy, uterine content, and fetal evaluations were carried out. RESULTS: In all studies, thalidomide was selectively toxic to development. In the pulse-dosing study, lenalidomide did not affect development at 100 mg/kg/day. Increases in C(max) and AUC(0-24 hr) values for lenalidomide were slightly less than dose-proportional; lenalidomide occurred in the fetuses. At 10 and 20 mg/kg/day, lenalidomide was maternally toxic (reduced body weight gain and feed consumption; at 20 mg/kg/day, weight loss and one abortion). Developmental toxicity at 10 and 20 mg/kg/day included reduced fetal body weights and increased postimplantation losses and fetal variations (morbidity/purple-discolored skin, undeveloped intermediate lung lobe, irregular nasal-frontal suture, and delayed metacarpal ossification). Thalidomide selectively reduced fetal body weight, increased postimplantation loss and caused characteristic limb and other dysmorphology. CONCLUSIONS: The maternal and developmental NOAELs for lenalidomide are 3 mg/kg/day. Unlike thalidomide, lenalidomide affected embryo-fetal development only at maternally toxic dosages, confirming that structure-activity relationships may not predict maternal or developmental effects. No fetal malformations were attributable to lenalidomide.  相似文献   

11.
The effects of renal injury on the urinary excretion and tissue distribution of a 20-mer phosphorothioate oligonucleotide were investigated in male Sprague-Dawley rats. Renal injury was produced by treating the rats with either 5.0 mg/kg cisplatin or 2.5 mg/kg of a monoclonal antibody (mAb) directed toward Thy1.1. Controls received saline. Three days after cisplatin treatment or 2 days after anti- Thy1.1 treatment, the rats received 10 mg/kg ISIS 3521. Blood was collected at various times to assess the plasma concentrations of ISIS 3521, and rats were killed at various times from 6 to 48 hours after intravenous (i.v.) infusion of oligonucleotide to assess tissue concentrations by capillary gel electrophoresis (CGE). Cisplatin and anti-Thy1.1 antibody produced histologic and biochemical changes consistent with proximal tubular damage and glomerular damage, respectively. Urinary excretion of oligonucleotides was increased 2- to 4-fold of control; however, this amount accounted for only 1% to 2% of dose compared to 0.5% in controls. Proximal tubular damage reduced renal accumulations of ISIS 3521 and other oligonucleotide metabolites, but there were no obvious compensatory increases in concentrations in other organs except for a slight increase in spleen levels of total oligonucleotide. Glomerular damage was not associated with any change in oligonucleotide disposition. Immunohistochemical studies showed no evidence of alterations in the pattern of distribution within the injured kidney. The data suggest that acute renal dysfunction, either renal tubular or glomerular, does not markedly alter the urinary elimination and tissue deposition of a phosphorothioate oligonucleotide.  相似文献   

12.
1. Liver glycogen levels and plasma levels of insulin and glucagon were measured in fed and in food- and water-deprived prairie dogs. 2. Liver glycogen values decreased from 45.5 to 12.4 mg/g (73%) after 21 days of food and water deprivation, while a 24-hr fast resulted in a liver glycogen value of 47.5 mg/g. 3. Rat liver glycogen values decreased from 45.6 to 2.3 mg/g (95%) after a 24-hr fast. 4. Prairie dog plasma insulin values were 69.2, 15.8 and 25.4 microU/ml in fed, and in 24-hr and 32-day food- and water-deprived animals, respectively. 5. Prairie dog plasma glucagon levels were 57.0 and 38.4 microU/ml in fed and in 32-day food- and water-deprived animals. 6. Plasma values for glucose, urea nitrogen, acetone and triglyceride agreed with previously published results. 7. We conclude that it is possible that the maintenance of liver glycogen levels in food- and water-deprived prairie dogs may be correlated with a smaller decrease in plasma insulin levels, relative to other species, and with a decrease in plasma glucagon levels.  相似文献   

13.
The objective of this study was to determine the effect of chronic maternal administration of moderate-dose ethanol on alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the guinea pig at near-term pregnancy. The activity of each enzyme in the maternal liver, fetal liver, and placenta of the guinea pig at 59 days of gestation (term, 66 days) was determined spectrophotometrically following chronic daily oral administration of two doses of 1 g ethanol/kg maternal body weight or isocaloric sucrose solution. There was no experimental evidence of ethanol-induced malnutrition in the mother or growth retardation in the fetus. There was a statistically significant increase (65%) in the microsomal cytochrome P-450 content of the maternal liver for the ethanol treatment compared with the sucrose treatment. The alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the maternal liver, fetal liver, and placenta were not statistically different for the ethanol-treated compared with the sucrose-treated animals. This also was the case for the maternal blood and fetal blood ethanol and acetaldehyde concentrations, determined at 2h after maternal administration of 1 g ethanol/kg maternal body weight. These data demonstrate that the ethanol- and acetaldehyde-oxidizing enzyme activities in the maternal-placental-fetal unit of the guinea pig at near-term pregnancy were not changed by chronic administration of moderate-dose ethanol.  相似文献   

14.
Developmental and toxic effects of aqueous extracts of F. moniliforme culture material containing known levels of fumonisin B1 were recently reported in mice and included maternal hepatotoxicity and lethality, maternal body weight gain reduction, increased embryonic resorptions, reduced offspring body weights, and fetal malformations including cleft palate, hydrocephalus, malformed ribs and incomplete digital and sternal ossification. These studies also suggested that the effects of the fungal extract on the mouse offspring may be mediated via maternal effects. The contribution of fumonisin B1 (FB1), a major toxic metabolite of F moniliforme, in the induction of these effects was evaluated in this study by administering 0 to 100 mg pure FB1/kg of body weight on gestational days (GD) 7 through 15 to pregnant Charles River CD1 mice and assessing maternal health and fetal development till the end of gestation. Doses of 25 mg/kg or higher of pure FB1 induced maternal liver lesions (mostly necrotic changes), associated with ascites and increased hepatocytic nuclear diameter. Fumonisin doses of 50 mg/kg or higher also resulted in significantly increased maternal ALT on GD12, and reduced offspring bodyweights on GD 18. Increased resorptions and decreased numbers of live offspring were only evident at 100 mg FB1/kg body weight. Offspring exhibited dose-dependent increase in the incidence and severity of hydrocephalus of both the lateral and third ventricles at doses of 25 mg/kg or higher. Doses of 25 mg/kg or higher also increased the sphinganine/sphingosine (Sa/So) ratios in maternal but not fetal livers. These results suggest that FB1 may be a developmental toxicant accounting for most but not all earlier reported effects of F. moniliforme culture extract. Association of FB1 effects on the offspring with maternal hepatoxicity and with alteration of Sa/So ratio in maternal but not fetal liver supported the earlier claim that FB1 effects on the mouse offspring are mediated by maternal hepatotoxicity.  相似文献   

15.
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.  相似文献   

16.
The dose-response relationship in brain, plasma, and adrenal monoamine changes after acute oral ethanol administration (1, 2, 4 g/kg body wt) was studied in virgin rats to determine whether the response to the highest dose differed in 21-day pregnant animals, and to assess the potential consequences of ethanol on the neurotransmitter systems of their fetuses. Blood ethanol and acetaldehyde concentrations in blood increased progressively with the ethanol dose in virgin rats, and values in pregnant animals were very similar. Ethanol concentration in fetal blood and amniotic fluid did not differ from that in mother's blood whereas fetal acetaldehyde concentrations were negligible. In a dose-related manner, ethanol decreased brain DA, DOPAC and 5HT concentrations did not affect those of NA and 5HIAA, or adrenal A and NA concentrations, whereas it enhanced plasma NA levels. Basal levels of monoamines and their changes after ethanol intake did not differ in pregnant and virgin rats. Monoamine and metabolite concentrations were much lower in fetal than in maternal brains whereas plasma and adrenal catecholamine concentrations were very similar and maternal ethanol intake did not modify these fetal parameters in the fetus. Results are in agreement with the known similar metabolic response to ethanol in fed pregnant and virgin rats. The lack of fetal monoamine response to maternal ethanol intake may be a consequence of the incapacity of fetal liver to form acetaldehyde and the ability of the placenta to oxidize maternal acetaldehyde which protects the fetus from maternal alcohol intake at late gestation.  相似文献   

17.
BACKGROUND: Dimethoate (O,O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate), an organophosphate insecticide, was examined for its potential to produce developmental toxicity in rats after oral administration. METHODS: Pregnant Fischer 344 rats were given sublethal doses of 0 (corn oil), 7, 15, and 28 mg/kg/day dimethoate by gavage on gestation days (GD) 6-15. Maternal effects in 15 and 28 mg/kg/day dose groups included cholinergic signs such as tremors, diarrhea, weakness, and salivation, and depression in the maternal and fetal brain acetylcholinesterase (AChE) activities. Other maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. No maternal toxicity was apparent in the 7 mg/kg/day dose group. RESULTS: Maternal exposure to dimethoate during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 28 mg/kg/day dose group. No external, visceral, and skeletal abnormalities were observed in any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results dimethoate can produce clinical signs of toxicity and significant inhibition of the maternal and fetal AChE activities in dose groups of 15 and 28 mg/kg/day and showed fetotoxicity without teratogenic effects at 28 mg/kg/day.  相似文献   

18.
Epoxiconazole (EPX; CAS‐No. 133855‐98‐8) is a triazole class–active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7–18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 μg/animal/day of estradiol cyclopentylpropionate abolished the EPX‐mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen‐related mechanism behind EPX‐mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno‐fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013). Birth Defects Res (Part B) 98:247–259, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
BACKGROUND: Methylnitrosourea (MNU) is a potent carcinogen and teratogen that is associated with central nervous system, craniofacial, skeletal, ocular, and appendicular birth defects following transplacental exposure at critical time points during development, and preliminary studies have suggested that nonspecific maternal immunostimulation may offer protection against development of these birth defects. METHODS: Our study examined morphologic alterations in fetal limb and digital development and placental integrity following maternal exposure to MNU on GD 9 in CD-1 mice, and characterized the improvement in placental integrity and abrogation of fetal defects following maternal immune stimulation with interferon-gamma (IFN-gamma) on GD 7. RESULTS: Fetal limbs were significantly shortened (p < 0.0001) and incidence of limb and digital defects (syndactyly, polydactyly, oligodactyly, clubbing, and webbing) was dramatically increased following mid-gestational maternal MNU exposure. Maternal immune stimulation with IFN-gamma on GD 7 lessened incidence of fetal limb shortening and maldevelopment on GD 12 and 14. Further, disruption of placental spongiotrophoblast integrity, increased cell death in placental trophoblasts with increased intercellular spaces in the spongiotrophoblast layer and minimal inflammation, and increased loss of fetal labyrinthine endothelial cells from MNU-exposed dams suggested that MNU-induced placental breakdown may contribute to fetal limb and digital maldevelopment. MNU + IFN-gamma was associated with diminished cell death within all layers of the placenta, especially in the labyrinthine layer. CONCLUSIONS: These data verify improved distal limb development in MNU-exposed mice as a result of maternal IFN-gamma administration, and suggest a link between placental integrity and proper fetal development.  相似文献   

20.
BACKGROUND: The developmental toxicity, toxicokinetics, and hematological effects of the antimalarial drug, artesunate, were previously studied in rats and rabbits and have now been studied in cynomolgus monkeys. METHODS: Groups of up to 15 pregnant females were dosed on Gestation Days (GD) 20–50 or for 3–7‐day intervals. RESULTS: At 30 mg/kg/day, 6 embryos died between GD30 and GD40. Histologic examination of 3 live embryos (GD26–GD36) revealed a marked reduction in embryonic erythroblasts and cardiomyopathy. At 12 mg/kg/day, 6 embryos died between GD30 and GD45. Four surviving fetuses examined on GD100 had no malformations, but long bone lengths were slightly decreased. At the developmental no‐adverse‐effect‐level (4 mg/kg/day), maternal plasma AUC was 3.68 ng.h/mL for artesunate and 6.93 ng.h/ml for its active metabolite, dihydroartemisinin (DHA). No developmental toxicity occurred with administration of 12 mg/kg/day for 3 or 7 days, GD29–31 or GD27–33 (maternal plasma AUC of 9.84 ng.h/mL artesunate and 16.4 ng.h/mL DHA). Exposures at embryotoxic doses were substantially lower than human therapeutic exposures. However, differences in monkey and human Vss for artesunate (0.5 L/kg vs. 0.18 L/kg) confound relying solely on AUC for assessing human risk. Decreases in reticulocyte count occur at therapeutic doses in humans. Changes to reticulocyte counts at embryotoxic doses in monkeys (≥12 mg/kg/day) were variable and generally minor. CONCLUSIONS: Artesunate was embryolethal at ≥12 mg/kg/day when dosed for at least 12 days at the beginning of organogenesis, but not when dosed for 3 or 7 days, indicating that developmental toxicity of artesunate is dependent upon duration of dosing in cynomologus monkeys. Birth Defects Res (Part B) 83:418–434, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号