首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M T Pérez  M Pinilla  P Sancho 《Life sciences》1999,64(24):2273-2283
In order to explore possibilities of using erythrocytes as carrier systems for delivery of pharmacological agents, we have studied the in vivo survival of murine carrier red blood cell populations enriched in young or old cells. Hypotonic-isotonic dialysis has been used to modify the cells as carrier systems and Percoll/albumin density gradients or counter-current distribution in aqueous polymer two-phase systems to separate them according to age. Hypotonic-isotonic dialysis produces a decrease in the red blood cell populations in vivo survival rate (from 9.5 to 7.8 days). Among the cells modified as carriers, the enriched young red blood cell populations show a higher in vivo survival (half-life 6.5-7.4 days) than populations made up of predominantly old red blood cells (half-life 4.7-6.2 days). Half-life of young or old circulating red blood cells was approximately one day longer when these cells were separated by counter-current distribution rather than by Percoll density gradients. Based on these results, hypotonic-isotonic dialysis of whole and enriched young or old red blood cell populations, with higher or lower survival rates, can be considered as a useful tool for modification of these cells as carriers. The final outcome of such changes can be translated into better control of plasma drug delivery during therapy.  相似文献   

2.
Moderate osmotic shocks of human erythrocytes by hypotonic dialysis (0.06 mosmol/kg) induce cell swelling and formation of pores, without causing apparent lysis. Using 125I-labeled macromolecules of different molecular weight and net charge, we followed the kinetics and efficiency of their encapsulation into erythrocytes. After a 20-30 min period of cell dialysis, macromolecules of up to 50 kDa begin diffusing into the swollen cells by a process which can be described by a first-order two-compartment kinetics. Adsorption to the external cell surface was insignificant, while adsorption to the inner membrane surface was substantial (15-20%) only for positively charged proteins, at physiological pH. After resealing, pores of a 12-14 kDa cut-off might remain open allowing some release of entrapped material (20-30%), depending on the final cytocrit, while the remaining might be associated with inner membrane or cytosolic components. Although the method of hypotonic dialysis is known to affect minimally the biophysical and immunological properties of red blood cell membranes, the interaction of encapsulated material with cell constituents would need to be further assessed when considering red cells as macromolecular carriers.  相似文献   

3.
C A Kruse 《Blood cells》1991,17(1):177-89; discussion 190-1
Although annealed red blood cell (RBC) carriers, when made by different methods, encapsulate similar quantities of methotrexate (MTX) molecules, the mechanisms by which the carrier cells are formed and by which molecules are taken up may be very different as evidenced by electron microscopy (EM) of the cells at various stages during their formation. Scanning electron microscopy (SEM) revealed that dialysis- and preswell-prepared carriers, both procedures which involve exposure to hypotonic buffer, initially transform from discocytes to echinocytes, but later exhibit morphologically heterogeneous cell types. In contrast, electroporated carriers, formed under isotonic conditions, uniformly show an initial discocyte-spheroechinocyte transformation. Transmission electron microscopy (TEM) of osmotically stressed RBC carriers demonstrates that uptake of molecules can be facilitated both by endocytosis and passive diffusion, whereas electrically pulsed carriers encapsulate material only by passive diffusion. Such experiments provide evidence that methods can be refined potentially for producing and isolating carriers that would have more predictable properties in vivo.  相似文献   

4.
We have compared two techniques for introducing RNA into red blood cell ghosts. In the pre-swell technique, RNA is introduced into red cells without prior removal of endogenous contents. In the multiple lysis technique, the red cells are subjected to two or three cycles of reversible lysis, prior to introducing the RNA, in order to first remove the normal red cell constituents. The pre-swell technique offers much greater entrapment of both tRNA and protamine messenger RNA (mRNA), but the RNA appears to be degraded during the procedure. This may be due either to nuoleolytic degradation or oxidation by the high concentration of endogenous hemoglobin. The multiple lysis technique offers much lower entrapment but also results in diminished degradation of the entrapped RNA. Although some degradation is apparent, a significant portion of the biological activity of the entrapped protamine mRNA is retained. We have also fused red cells loaded with protamine mRNA by the multiple lysis technique to HeLa cells using polyethylene glycol 6000. The recipient HeLa cells are capable of translating this heterologous message into protamine, a trout testis chromosomal protein.  相似文献   

5.
The thickness of the red cell membrane skeleton was deduced from measurements of the isthmus zones of intact cells that were maximally narrowed by one of two independent methods. The first method involved application of viscous drag to red cells entrapped between spider web fibers. The second method utilized cellular dehydration followed by spectrin denaturation at 49.5 degrees C. Measurements on thin sections showed that the isthmus is narrowed to approximately 120 nm by either method, suggesting that the membrane skeleton occupies a zone beneath the lipid bilayer that is up to 60 nm in thickness. The tertiary and quarternary structure of band 3, a major integral membrane protein that anchors the membrane skeleton to the lipid bilayers may be a critical determinant of the location of the membrane skeleton within the red cell.  相似文献   

6.
It has been reported that 3-D cultures of hepatocytes or HepG2 cells were less susceptible to methotrexate (MTX) than their 2-D counterparts. Such a mechanism was addressed in this study by investigation of MTX hepatotoxicity in gel entrapped (3-D) rat hepatocytes vs. traditional monolayer culture (2-D). Similarly, gel entrapped hepatocytes showed higher drug resistance to MTX than hepatocyte monolayers in whatever culture medium with or without modification by hormone supplements (dexamethasone, glucagon and insulin). It was also found that medium modification by hormones greatly increased drug resistance of hepatocyte monolayers but has only a slight effect on 3-D cultured hepatocytes. These differential MTX toxicities regarding culture medium and culture models were assumed to correlate with multidrug resistance associated protein 2 (Mrp2). The involvement of Mrp2 was confirmed directly by the fact that MTX intracellularly accumulated less in gel entrapped hepatocytes than in hepatocyte monolayer but could be enhanced by Mrp2 inhibitors accompanied by reduced drug resistance. Furthermore, the expression of Mrp2 on gene level and transportation activity together with bile-duct-like structure were more significantly evidenced in 3-D gel entrapment culture than in 2-D monolayer culture. In conclusion, the highly preserved Mrp2 in 3-D gel entrapped hepatocytes determines its high drug resistance to MTX. Gel entrapped hepatocytes could be useful for investigation of hepatic transportation and hepatotoxicity.  相似文献   

7.
Aprotinin and alpha 1-proteinase inhibitor have been encapsulated in human red blood cells (RBC) by a dialysis technique that involves transient hypotonic haemolysis followed by isotonic resealing. Both protease inhibitors can be encapsulated to a considerable extent. These molecules are released only by haemolysis of the cells and that excludes the possibility of using loaded erythrocytes for a slow release of the inhibitor(s) in the blood stream. However, the stability of the two inhibitors, the evidence for the binding of aprotinin to RBC components, and the results showing inhibition of endogenous proteolytic activity indicate that the inhibitors may be valuable in blocking, at least partially, undesired intraerythrocytic proteolytic reactions.  相似文献   

8.
Polygammaglutamyl metabolites of methotrexate   总被引:8,自引:0,他引:8  
Heretofore unrecognized metabolites of methotrexate (MTX) have been detected in human red blood cells and isolated from rat liver and viscera. The metabolites from the rat were identified as 2,4-diamino-N10-methylpteroylglutamyl-γ-glutamic acid [MTX(G1)] and 2,4-diamino-N10-methylpteroylglutamyl-γ-glutamyl-γ-glutamic acid [MTX(G2)] by comparison with authentic synthetic compounds.  相似文献   

9.
A method previously used in this laboratory for entrapment of tumor cells in alginate beads has been extended to provide a slow release delivery system for growth factors with known in vivo angiogenic activity. Protein growth factors were entrapped in alginate beads in amounts sufficient to cause incorporation of 3H-thymidine by COMMA-D cells in vitro, and in vivo neovascularization when injected subcutaneously into Balb/c mice. Entrapment of 125I-labelled growth factors showed that the amount of molecule entrapped in alginate beads may vary with the charge of the molecule. In vitro cell proliferation studies showed that entrapment in alginate beads may provide a slow-release system or a stabilizing environment for the protein. In some cases biological activity of the growth factor in solution was increased by the presence of control alginate beads. When alginate-entrapped growth factors were injected into Balb/c mice, induction of new blood vessels could be monitored qualitatively by macroscopic photography and assessed quantitatively by measuring the pooling of radiolabelled red blood cells at the experimental site. Subcutaneous injection of purified angiogenic factors not entrapped in alginate beads did not cause neovascularization. Diffusion of 125I-labelled growth factors from alginate beads in the animal showed that release in vivo may depend on the charge of the protein molecule. These results indicate that injection of purified molecules entrapped in alginate beads provides an effective localized and slow-release delivery of biologically active molecules. This delivery system may extend the time of effectiveness of biologically active molecules in vivo compared to direct injection without alginate entrapment. The method of entrapment and injection has potential for identifying active factors in tumor-induced angiogenesis and testing new compounds as modulators of neovascularization.  相似文献   

10.
The tendency of rat red blood cells to hemolyze in the presence of peroxidizing rat liver microsomes is greatly increased if the red cells are obtained from vitamin E deficient rats. Adequate dietary vitamin E supplementation imparts resistance against hemolysis. Dietary butylated hydroxytoluene or the level of erythrocyte glutathione or total thiols are relatively unimportant factors in determining red cell sensitivity to hemolysis induced by perixiziding microsomes. When separated from peroxidizing microsomes by a dialysis membrane, vitamin E deficient cells are completely hemolyzed. Hemolytically active material can be separated from peroxidized microsomes by dialysis at 0°C.  相似文献   

11.
The relative Na24 specific activity of red cells and plasma was measured at periods up to 30 hours following a single intravenous injection of Na24 in normal healthy young adults. The average specific activity of the red cells relative to that of the plasma at 24 hours and beyond was found to average 0.83 ± 0.05 in a series of five normal individuals, significantly different from 1.0. This indicates that all the intracellular Na is not exchangeable in 24 hours, and confirms earlier in vitro results. The red cell Na concentration in man was shown to be 12.1 ± 1.1 m.eq. Na/liter red cell, as measured in a series of nineteen normal healthy young adults. A theoretical analysis of the data on exchangeable cell Na suggests that the red cell Na (5.3 m.eq. Na/liter blood) is divided into a fast compartment comprising 4.25 m.eq. Na/liter blood, and a slow compartment comprising 1.07 m.eq. Na/liter blood. If these compartments are arranged in parallel, the flux between plasma and fast compartment is 1.32 m.eq. Na/liter blood hour, and that between plasma and slow compartment is 0.016 m.eq. Na/liter blood hour. Results of experiments on two patients with congenital hemolytic jaundice suggest that the fraction of slowly exchanging Na may increase with the age of the red cell.  相似文献   

12.
The effective diffusivity of galactose was measured for calcium alginate gel membranes containing immobilized live Zymomonas mobilis cells at concentrations ranging from 0 to 150 g dry wt/L of gel. Since galactose is not taken up by living Z. mobilis organisms, the diffusion of this representative six-carbon sugar could be studied independently of sugar consumption. Various immobilized biomass loadings were achieved by two different techniques: addition of biomass at known concentrations to the sodium alginate solution before membrane formation and growth of cells in the gel to various biomass concentrations. The highest immobilized cell concentration, attained by in situ growth, corresponds to the maximum of this system, as growth beyond this maximum concentration led to disintegration of the gel membrane. The galactose effective diffusivity measurements for both methods of immobilized cell loading overlap within experimental error and follow the same general monotonic decline with entrapped biomass concentration. Most of the data fall below the upper bound predicted by Hashin and Shtrikman (1962) and show good agreement with the random pore model of Wakao and Smith (1962, 1964). Available effective diffusivity data from the literature provide evidence that the random pore model is an excellent predictor of sugar effective diffusivity in gel immobilized cell systems in general.  相似文献   

13.
Transmission and scanning electron microscopy (EM) of osmotically stressed and electrically pulsed human erythrocyte carriers indicated that the mode of uptake of methotrexate (MTX) varied depending on the method of carrier production. The preswell and electroporation loading methods, apparently by facilitating passive diffusion across the cell membrane, promoted incorporation of the MTX directly into the cytoplasm of the carriers, as evidenced by their variable electron densities. The preswell method produced carriers displaying leptocytic characteristics, whereas the electroporation method produced carriers exhibiting sphero- and stomatocytic transformation. Hypotonic dialysis-prepared carriers took up MTX primarily by endocytosis and secondarily by passive diffusion. Endocytotic activity was not induced by the MTX. Scanning EM revealed that most of the dialysis-prepared carriers exhibited prominent invaginations of the cell surface. Transmission EM of serial thin sections through these carriers revealed numerous fully internalized, membrane-bound vesicles. Endocytotic activity caused progressive loss of membrane and resulted in the sphero- and stomatocytic transformation of the carriers.  相似文献   

14.
The process of establishing high-producing cell lines for the manufacture of therapeutic proteins is usually both time-consuming and laborious due to the low probability of obtaining high-producing clones from a pool of transfected cells and slow cell growth under the strong selective pressure of screening to identify high-producing clones. We present a novel method to rapidly generate more high-producing cells by accelerating transgene amplification. A small interfering RNA (siRNA) expression vector against ataxia telangiectasia and Rad3 related (ATR), a cell cycle checkpoint kinase, was transfected into Chinese hamster ovary (CHO) cells. The influences of ATR downregulation on gene amplification and the productivity were investigated in CHO cells producing green fluorescent protein (GFP) and secreting monoclonal antibody (mAb). The ATR-downregulated cells showed up to a 6-fold higher ratio of GFP-positive cells than that of the control cell pool. Moreover, the downregulated mAb-producing cells had about a 4-fold higher specific production rate and a 3-fold higher volumetric productivity as compared with the mock cells. ATR-downregulated cells showed a much faster increase in transgene copy numbers during the gene amplification process via methotrexate (MTX) treatment in both GFP- and mAb-producing cells. Our results suggest that a pool of high-producing cells can be more rapidly generated by ATR downregulation as compared with conventional gene amplification by MTX treatment. This novel method may be a promising approach to reduce time and labor in the process of cell line development.  相似文献   

15.
The possible mechanisms underlying the acquisition of an increased ascorbic acid content by mouse erythrocytes containing the malarial parasite Plasmodium vinckei were investigated. Ascorbic acid was taken up readily by parasitized red blood cells but not by controls, whilst its partly oxidized form, dehydroascorbic acid, entered both. The uptake of both ascorbic acid and dehydroascorbic acid into erythrocytes was increased as a result of malarial infection. Lysates prepared from parasitized red blood cells reduced exogenous dehydroascorbic acid to ascorbic acid at a higher rate than control red blood cell lysates; this difference was abolished following dialysis of the lysates, a process which removes endogenous reduced glutathione (GSH). The rates of chemical and enzymatic reduction of dehydroascorbic acid to ascorbic acid by GSH were of similar magnitude, thus calling into question the existence of a specific dehydroascorbate reductase in erythrocytes and parasites. These observations suggest that the increased uptake of dehydroascorbic acid into parasitized red blood cells may be a result of enhanced dehydroascorbate-reducing capacity, whilst the presence of the parasite induces a selective increase in the permeability of the erythrocyte plasma membrane to ascorbic acid. The endogenous ascorbic acid content of livers obtained from infected mice was 55% below the normal concentration and its relative rate of destruction during incubation in vitro was enhanced in comparison with that of control livers. Furthermore, the capacity of liver homogenates to synthesize ascorbic acid from glucuronic acid was greatly reduced in infected mice. Therefore it is unlikely that the increase in ascorbic acid content of parasitized red blood cells is a consequence of increased biosynthesis and release of ascorbic acid by the host liver. We have not been able to exclude the possibility that the malarial parasite itself may be capable of de novo synthesis of ascorbic acid.  相似文献   

16.
Upon exposure of primary monolayer cultures of hepatocytes and H35 hepatoma cells, methptrexate (MTX) is taken up by carrier-mediated mechanisms and converted to γ-glutamyl derivatives with one to four residues being added. Under conditions that result in 90% or greater conversion, the primary metabolite in both cell types is MTX with three additional glutamates (4-NH2-10-CH3PteGlu4). When the time-dependent synthesis of MTX polyglutamates (4-NH2-10-CH3PteGlu2 and higher) at extracellular concentrations of 10 and 100 μm methotrexate is measured, both cell types exhibit linear synthesis for 4 to 6 hr, at which time an apparent steady state intracellular concentration of approximately 40 μm is reached. The concentration of MTX polyglutamate synthesized is not due a restriction in MTX since the hepatocytes and H35 cells accumulated 400 and 138 μm intracellular methotrexate, respectively, after 24 h in the presence of 100 μm extracellular MTX. Examination of MTX polyglutamate formation following a 24-h incubation showed concentration dependence with respect to intra- and extracellular MTX. Saturation was reached at a medium concentration of approximately 2 μm with both cell types which corresponded to 10 to 12 μm intracellular MTX. Placement of cells at steady state in medium lacking MTX results in the rapid equilibration of all free intracellular MTX with the medium. The MTX polyglutamates leave the cell by a slow loss of intact polyglutamates and also by intracellular cleavage to MTX followed by efflux. The longer-chain-length γ-glutamyl derivatives (Glu4–5) are more avidly retained by the cells than the shorter ones (Glu2–3).  相似文献   

17.
Two cytochalasin B-binding states of the human red blood cell facilitative glucose transporter GLUT1 were studied, one exhibiting one cytochalasin B-binding site on every second GLUT1 monomer (state 1) and the other showing one site per monomer (state 2). Quantitative affinity chromatography of cytochalasin B was performed on (a) biotinylated red blood cells, (b) cytoskeleton-depleted red blood cell membrane vesicles, and (c) GLUT1 proteoliposomes. The cells were adsorbed on streptavidin-derivatized gel beads, and the vesicles and proteoliposomes entrapped in dextran-grafted agarose gel beads. Cytochalasin B binding to free vesicles and proteoliposomes was analyzed by Hummel and Dreyer size-exclusion chromatography and ultracentrifugation. Analysis of the biotinylated cells indicated an equilibrium between the two GLUT1 states. GLUT1 in free membrane vesicles attained state 2, but was converted into state 1 on entrapment of the vesicles. Purification of GLUT1 in the presence of non-ionic detergent followed by reconstitution produced GLUT1 in state 1. This state was maintained after entrapment of the proteoliposomes. Finally, GLUT1 showed slightly higher affinity for cytochalasin B in state 1 than in state 2. In summary, the cytochalasin B-binding state of GLUT1 seemed to be affected by (a) biotinylation of the cell surface, (b) removal of the cytoskeleton at high pH and low ionic strength, (c) interaction between the dextran-grafted agarose gel matrix and the membrane vesicles, and (d) reconstitution to form proteoliposomes.  相似文献   

18.
Malaria parasites, Plasmodia, spend most of their asexual life cycle within red blood cells, where they proliferate and mature. The erythrocyte cytoplasm has very low [Ca2+] (<100 nM), which is very different from the extracellular environment encountered by most eukaryotic cells. The absence of extracellular Ca2+ is usually incompatible with normal cell functions and survival. In the present work, we have tested the possibility that Plasmodia overcome the limitation posed by the erythrocyte intracellular environment through the maintenance of a high [Ca2+] within the parasitophorous vacuole (PV), the compartment formed during invasion and within which the parasites grow and divide. Thus, Plasmodia were allowed to invade erythrocytes in the presence of Ca2+ indicator dyes. This allowed selective loading of the Ca2+ probes within the PV. The [Ca2+] within this compartment was found to be approximately 40 microM, i.e., high enough to be compatible with a normal loading of the Plasmodia intracellular Ca2+ stores, a prerequisite for the use of a Ca2+-based signaling mechanism. We also show that reduction of extracellular [Ca2+] results in a slow depletion of the [Ca2+] within the PV. A transient drop of [Ca2+] in the PV for a period as short as 2 h affects the maturation process of the parasites within the erythrocytes, with a major reduction 48 h later in the percentage of schizonts, the form that re-invades the red blood cells.  相似文献   

19.
The uptake of copper and zinc by patients undergoing regular haemodialysis has been assessed by measuring the dialysis fluid for copper and zinc concentration, and the blood entering and leaving the dialysis coil for red cell copper, plasma free copper, and plasma zinc levels during priming of the coil and subsequent haemodialysis, and by in-vitro studies.Red cells avidly removed copper from dialysis fluid when mixed with saline during priming, but did not take up copper during the haemodialysis. At both these stages plasma actively took up both copper and zinc from dialysis fluid, even against a concentration gradient, so that loss of these metals from plasma to dialysis fluid did not occur.In the dialysis systems investigated the sources of the copper in the dialysis fluid were the copper plumbing of the tap-water and the dialysis coil, and the major source of zinc was the zinc oxide of the adhesive plaster around the dialysis coil.  相似文献   

20.
Preparation of lipid-free human hemoglobin by dialysis and ultrafiltration   总被引:2,自引:0,他引:2  
Dialysis of human red blood cells using a hypotonic solution and a commercial kidney dialysis unit followed by ultrafiltration through 0.1 micron pore hollow fibers provides an easily managed method for isolation of lipid-free hemoglobin. High pressure liquid chromatography analysis of lipid-free hemoglobin (LFHB) indicates 99-100% protein purity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that LFHB migrates as a single band. The process requires hypoosmotic dialysis of human RBC to a final 119-139 (av 132) mosmol/kg osmotic pressure. Additional reduction in osmotic pressure results in irreversible cell lysis which results in lipid contamination of the hemoglobin. Processing one-half liter of packed red blood cells requires 10 h, resulting in an average of 90% hemoglobin recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号