首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential for eukaryotic cell proliferation and is the only protein containing hypusine, [Nε-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine. eIF5A also undergoes an acetylation at specific Lys residue(s). In this study, we have investigated the effect of hypusine modification and acetylation on the subcellular localization of eIF5A. Immunocytochemical analyses showed differences in the distribution of non-hypusinated eIF5A precursor and the hypusine-containing mature eIF5A. While the precursor is found in both cytoplasm and nucleus, the hypusinated eIF5A is primarily localized in cytoplasm. eIF5A mutant proteins, defective in hypusine modification (K50A, K50R) were localized in a similar manner to the eIF5A precursor, whereas hypusine-modified mutant proteins (K47A, K47R, K68A) were localized mainly in the cytoplasm. These findings provide strong evidence that the hypusine modification of eIF5A dictates its localization in the cytoplasmic compartment where it is required for protein synthesis.  相似文献   

2.
The unusual basic amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.  相似文献   

3.
The eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unique polyamine-derived amino acid, hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed in eIF5A by a novel post-translational modification reaction that involves two enzymatic steps. In the first step, deoxyhypusine synthase catalyzes the cleavage of the polyamine spermidine and transfer of its 4-aminobutyl moiety to the epsilon-amino group of one specific lysine residue of the eIF5A precursor to form a deoxyhypusine intermediate. In the second step, deoxyhypusine hydroxylase converts the deoxyhypusine-containing intermediate to the hypusine-containing mature eIF5A. The structure and mechanism of deoxyhypusine synthase have been extensively characterized. Deoxyhypusine hydroxylase is a HEAT-repeat protein with a symmetrical superhelical structure consisting of 8 helical hairpins (HEAT motifs). It is a novel metalloenzyme containing tightly bound iron at the active sites. Four strictly conserved His-Glu pairs were identified as iron coordination sites. The structural fold of deoxyhypusine hydroxylase is entirely different from those of the other known protein hydroxylases such as prolyl 4-hydroxylase and lysyl hydroxylases. The eIF5A protein and deoxyhypusine/hypusine modification are essential for eukaryotic cell proliferation. Thus, hypusine synthesis represents the most specific protein modification known to date, and presents a novel target for intervention in mammalian cell proliferation.  相似文献   

4.
eIF5A (eukaryotic translation initiation factor 5A) is the only cellular protein containing hypusine [N?-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In the present study, we report selective acetylation of the hypusine and/or deoxyhypusine residue of eIF5A by a key polyamine catabolic enzyme SSAT1 (spermidine/spermine-N1-acetyltransferase 1). This enzyme normally catalyses the N1-acetylation of spermine and spermidine to form acetyl-derivatives, which in turn are degraded to lower polyamines. Although SSAT1 has been reported to exert other effects in cells by its interaction with other cellular proteins, eIF5A is the first target protein specifically acetylated by SSAT1. Hypusine or deoxyhypusine, as the free amino acid, does not act as a substrate for SSAT1, suggesting a macromolecular interaction between eIF5A and SSAT1. Indeed, the binding of eIF5A and SSAT1 was confirmed by pull-down assays. The effect of the acetylation of hypusine on eIF5A activity was assessed by comparison of acetylated with non-acetylated bovine testis eIF5A in the methionyl-puromycin synthesis assay. The loss of eIF5A activity by this SSAT1-mediated acetylation confirms the strict structural requirement for the hypusine side chain and suggests a possible regulation of eIF5A by hypusine acetylation/deacetylation.  相似文献   

5.
Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions.  相似文献   

6.
Park  Myung Hee  Kar  Rajesh Kumar  Banka  Siddharth  Ziegler  Alban  Chung  Wendy K. 《Amino acids》2022,54(4):485-499

Hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes–Banka syndrome, a craniofacial–neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.

  相似文献   

7.
8.
Deoxyhypusine synthase catalyzes the first step in hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) synthesis in a single cellular protein, eIF5A precursor. The synthesis of deoxyhypusine catalyzed by this enzyme involves transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in the eIF5A precursor protein to form a deoxyhypusine-containing eIF5A intermediate, eIF5A(Dhp). We recently discovered the efficient reversal of deoxyhypusine synthesis. When eIF5A([3H]Dhp), radiolabeled in the 4-aminobutyl portion of its deoxyhypusine residue, was incubated with human deoxyhypusine synthase, NAD, and 1,3-diaminopropane, [3H]spermidine was formed by a rapid transfer of the radiolabeled 4-aminobutyl side chain of the [3H]deoxyhypusine residue to 1,3-diaminopropane. No reversal was observed with [3H]hypusine protein, suggesting that hydroxylation at the 4-aminobutyl side chain of the deoxyhypusine residue prevents deoxyhypusine synthase-mediated reversal of the modification. Purified human deoxyhypusine synthase also exhibited homospermidine synthesis activity when incubated with spermidine, NAD, and putrescine. Thus it was found that [14C]putrescine can replace eIF5A precursor protein as an acceptor of the 4-aminobutyl moiety of spermidine to form radiolabeled homospermidine. The Km value for putrescine (1.12 mM) as a 4-aminobutyl acceptor, however, is much higher than that for eIF5A precursor (1.5 microM). Using [14C]putrescine as an acceptor, various spermidine analogs were evaluated as donor substrates for human deoxyhypusine synthase. Comparison of spermidine analogs as inhibitors of deoxyhypusine synthesis, as donor substrates for synthesis of deoxyhypusine (or its analog), and for synthesis of homospermidine (or its analog) provides new insights into the intricate specificity of this enzyme and versatility of the deoxyhypusine synthase reaction.  相似文献   

9.
Nishimura K  Lee SB  Park JH  Park MH 《Amino acids》2012,42(2-3):703-710
The eukaryotic initiation factor 5A (eIF5A) contains a polyamine-derived amino acid, hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed post-translationally by the addition of the 4-aminobutyl moiety from the polyamine spermidine to a specific lysine residue, catalyzed by deoxyhypusine synthase (DHPS), and subsequent hydroxylation by deoxyhypusine hydroxylase (DOHH). The eIF5A precursor protein and both of its modifying enzymes are highly conserved, suggesting a vital cellular function for eIF5A and its hypusine modification. To address the functions of eIF5A and the first modification enzyme, DHPS, in mammalian development, we knocked out the Eif5a or the Dhps gene in mice. Eif5a heterozygous knockout mice and Dhps heterozygous knockout mice were viable and fertile. However, homozygous Eif5a1 (gt/gt) embryos and Dhps (gt/gt) embryos died early in embryonic development, between E3.5 and E7.5. Upon transfer to in vitro culture, homozygous Eif5a (gt/gt) or Dhps (gt/gt) blastocysts at E3.5 showed growth defects when compared to heterozygous or wild type blastocysts. Thus, the knockout of either the eIF5A-1 gene (Eif5a) or of the deoxyhypusine synthase gene (Dhps) caused early embryonic lethality in mice, indicating the essential nature of both eIF5A-1 and deoxyhypusine synthase in mammalian development.  相似文献   

10.
Deoxyhypusine hydroxylase (DOHH) is a novel metalloenzyme that catalyzes the final step of the post-translational synthesis of hypusine (Nepsilon-(4-amino-2-hydroxybutyl)lysine) in the eukaryotic translation initiation factor 5A (eIF5A). Hypusine synthesis is unique in that it occurs in only one protein, denoting the strict specificity of the modification enzymes toward the substrate protein. The specificity of the interaction between eIF5A and DOHH was investigated using human eIF5A (eIF5A-1 isoform) and human recombinant DOHH. DOHH displayed a strong preference for binding the deoxyhypusine-containing form of eIF5A, over the eIF5A precursor or the hypusine-containing eIF5A, indicating a role for the deoxyhypusine residue in binding. In addition to the deoxyhypusine residue, a large portion of the eIF5A polypeptide (>20-90 amino acids) is required for effective modification by DOHH. We have identified the amino acid residues of DOHH that are critical for substrate binding by alanine substitution of 36 conserved amino acid residues. Of these, alanine substitution at Glu57, Glu90, Glu208, Glu241, Gly63, or Gly214 caused a severe impairment in eIF5A(Dhp) binding, with a complete loss of binding and activity in the E57A and E208A mutant enzymes. Only aspartate substitution mutants, E57D or E208D, retained partial activity and substrate binding, whereas alanine, glutamine, or asparagine mutants did not. These findings support a proposed model of DOHH-eIF5A binding in which the amino group(s) of the deoxyhypusine side chain of the substrate is primarily anchored by gamma-carboxyl groups of Glu57 and Glu208 at the DOHH active site.  相似文献   

11.
Deoxyhypusine synthase is the first of the two enzymes that catalyzes the maturation of eukaryotic initiation factor 5A (eIF5A). The mature eIF5A is the only known protein in eukaryotic cells that contains the unusual amino acid hypusine (N(epsilon)-(4-amino-2(R)-hydroxybutyl)-lysine). Synthesis of hypusine is essential for the function of eIF5A in eukaryotic cell proliferation and survival. Here we describe the cloning and characterization of bovine eIF5A and bovine deoxyhypusine synthase. The deduced bovine eIF5A protein is 100% identical to human eIF5A-1, and the deduced bovine deoxyhypusine synthase protein showed a 93% identity to the human protein.  相似文献   

12.
eIF5A is highly conserved from archaea to mammals, essential for cell viability and the only protein known to contain the essential amino acid residue hypusine, generated by a unique posttranslational modification. eIF5A was originally identified as a translation initiation factor due to its ability to stimulate the formation of the first peptide bond. However, recent studies have shown that depletion of eIF5A causes a significant decrease in polysome run-off and an increase in the ribosome transit time, suggesting that eIF5A is actually involved in the elongation step of protein synthesis. We have previously shown that the depletion mutant tif51A-3 (eIF5A(C39Y/G118D)) shows a sicker phenotype when combined with the dominant negative mutant eft2 ( H699K ) of the elongation factor eEF2. In this study, we used the eIF5A(K56A) mutant to further investigate the relationship between eIF5A and eEF2. The eIF5A(K56A) mutant is temperature sensitive and has a defect in protein synthesis, but instead of causing depletion of the eIF5A protein, this mutant has a defect in hypusine modification. Like the mutant tif51A-3, the eIF5A(K56A) mutant is synthetic sick with the mutant eft2 ( H699K ) of eEF2. High-copy eEF2 not only improves cell growth of the eIF5A(K56A) mutant, but also corrects its increased cell size defect. Moreover, eEF2 suppression of the eIF5A(K56A) mutant is correlated with the improvement of total protein synthesis and with the increased resistance to the protein synthesis inhibitor hygromycin B. Finally, the polysome profile defect of the eIF5A(K56A) mutant is largely corrected by high-copy eEF2. Therefore, these results demonstrate that eIF5A is closely related to eEF2 function during translation elongation.  相似文献   

13.
Eukaryotic protein synthesis initiation factor 4D (eIF-4D) (current nomenclature, eIF-5A) contains the unique amino acid hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine). The first step in hypusine biosynthesis, i.e. the formation of the intermediate, deoxyhypusine (N epsilon-(4-aminobutyl)lysine), was carried out in vitro using spermidine, deoxyhypusine synthase, and ec-eIF-4D(Lys), an eIF-4D precursor prepared by over-expression of human eIF-4D cDNA in Escherichia coli. In a parallel reaction, using N-(3-aminopropyl)cadaverine in place of spermidine, a variant form of eIF-4D containing homodeoxyhypusine (N epsilon-(5-aminopentyl)lysine) was prepared. Evidence that N-(3-aminopropyl)cadaverine can also act as the amine substrate for deoxyhypusine synthase in intact cells was obtained by incubating putrescine- and spermidine-depleted Chinese hamster ovary cells with [3H]cadaverine. In these cells, in which [3H]cadaverine is readily converted to N-(3-aminopropyl) [3H]cadaverine, small amounts of [3H]homodeoxyhypusine and another 3H-labeled compound, presumed to be N epsilon-(5-amino-2-hydroxy[3H]pentyl)lysine, were found. eIF-4D stimulates methionyl-puromycin synthesis, an in vitro model assay for translation initiation. Whereas the unmodified precursor ec-eIF-4D(Lys) appeared inactive, the deoxyhypusine-containing form provided a significant degree of stimulation. The variant form containing homodeoxyhypusine, on the other hand, showed little or no activity. These findings emphasize the importance of hypusine or deoxyhypusine for the biological activity of eIF-4D and demonstrate the influence of both the length and chemical nature of its amino alkyl side chain.  相似文献   

14.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid formed post-translationally in two steps by deoxyhypusine synthase and deoxyhypusine hydroxylase. Genes encoding eIF5A or deoxyhypusine synthase are essential for cell survival and proliferation. To determine the physiological function of eIF5A, we have employed the tandem affinity purification (TAP) method and mass spectrometry to search for and identify the potential eIF5A-interacting proteins. The TAP-tag was fused in-frame to chromosomal TIF51A gene and eIF5A-TAP fusion protein expressed at its natural level was used as the bait to fish out its interacting partners. At salt concentrations of 150 mM, deoxyhypusine synthase was the only protein bound to eIF5A. As salt concentrations were lowered to 125 mM or less, eIF5A interacted with a set of proteins, which were identified as the components of the 80S ribosome complex. The eIF5A-ribosome interaction was sensitive to RNase and EDTA treatments, indicating the requirement of RNA and the joining of 40S and 60S ribosomal subunits for the interaction. Importantly, a single mutation of hypusine to arginine completely abolished the eIF5A-ribosome interaction. Sucrose gradient sedimentation analysis of log versus stationary phase cells and eIF3 mutant strain showed that the endogenous eIF5A co-sedimented with the actively translating 80S ribosomes and polyribosomes in an RNase- and EDTA-sensitive manner. Our study demonstrates for the first time that eIF5A interacts in a hypusine-dependent manner with a molecular complex rather than a single protein, suggesting that the essential function of eIF5A is mostly likely mediated through its interaction with the actively translating ribosomes.  相似文献   

15.
Hypusination is a unique posttranslational modification by which lysine is transformed into the atypical amino acid hypusine. eIF5A (eukaryotic initiation factor 5A) is the only known protein to contain hypusine. In this study, we describe the identification and characterization of nero, the Drosophila melanogaster deoxyhypusine hydroxylase (DOHH) homologue. nero mutations affect cell and organ size, bromodeoxyuridine incorporation, and autophagy. Knockdown of the hypusination target eIF5A via RNA interference causes phenotypes similar to nero mutations. However, loss of nero appears to cause milder phenotypes than loss of eIF5A. This is partially explained through a potential compensatory mechanism by which nero mutant cells up-regulate eIF5A levels. The failure of eIF5A up-regulation to rescue nero mutant phenotypes suggests that hypusination is required for eIF5A function. Furthermore, expression of enzymatically impaired forms of DOHH fails to rescue nero clones, indicating that hypusination activity is important for nero function. Our data also indicate that nero and eIF5A are required for cell growth and affect autophagy and protein synthesis.  相似文献   

16.
The eukaryotic protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis. Polyamine biosynthesis is essential in T. brucei, and the polyamine spermidine is required for synthesis of a novel cofactor called trypanothione and for deoxyhypusine modification of eukaryotic translation initiation factor 5A (eIF5A). eIF5A promotes translation of proteins containing polyprolyl tracts in mammals and yeast. To evaluate the function of eIF5A in T. brucei, we used RNA interference (RNAi) to knock down eIF5A levels and found that it is essential for T. brucei growth. The RNAi-induced growth defect was complemented by expression of wild-type human eIF5A but not by a Lys-50 mutant that blocks modification by deoxyhypusine. Bioinformatics analysis showed that 15% of the T. brucei proteome contains 3 or more consecutive prolines and that actin-related proteins and cysteine proteases were highly enriched in the group. Steady-state protein levels of representative proteins containing 9 consecutive prolines that are involved in actin assembly (formin and CAP/Srv2p) were significantly reduced by knockdown of eIF5A. Several T. brucei polyprolyl proteins are involved in flagellar assembly. Knockdown of TbeIF5A led to abnormal cell morphologies and detached flagella, suggesting that eIF5A is important for translation of proteins needed for these processes. Potential specialized functions for eIF5A in T. brucei in translation of variable surface glycoproteins were also uncovered. Inhibitors of deoxyhypusination would be expected to cause a pleomorphic effect on multiple cell processes, suggesting that deoxyhypusine/hypusine biosynthesis could be a promising drug target in not just T. brucei but in other eukaryotic pathogens.  相似文献   

17.
Abstract

In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a β-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.  相似文献   

18.
Wolff EC  Kang KR  Kim YS  Park MH 《Amino acids》2007,33(2):341-350
Summary. A naturally occurring unusual amino acid, hypusine [N ɛ-(4-amino-2-hydroxybutyl)-lysine] is a component of a single cellular protein, eukaryotic translation initiation factor 5A (eIF5A). It is a modified lysine with structural contribution from the polyamine spermidine. Hypusine is formed in a novel posttranslational modification that involves two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). eIF5A and deoxyhypusine/hypusine modification are essential for growth of eukaryotic cells. The hypusine synthetic pathway has evolved in eukaryotes and eIF5A, DHS and DOHH are highly conserved, suggesting maintenance of a fundamental cellular function of eIF5A through evolution. The unique feature of the hypusine modification is the strict specificity of the enzymes toward its substrate protein, eIF5A. Moreover, DHS exhibits a narrow specificity toward spermidine. In view of the extraordinary specificity and the requirement for hypusine-containing eIF5A for mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes present new potential targets for intervention in aberrant cell proliferation.  相似文献   

19.
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.  相似文献   

20.
Deoxyhypusine hydroxylase is the second of the two enzymes that catalyzes the maturation of eukaryotic initiation factor 5A (eIF5A). The mature eIF5A is the only known protein in eukaryotic cells that contains the unusual amino acid hypusine (N(epsilon)-(4-amino-2(R)-hydroxybutyl)lysine). Synthesis of hypusine is essential for the function of eIF5A in eukaryotic cell proliferation and survival. Here, we describe the cloning and characterization of bovine deoxyhypusine hydroxylase cDNA and its homologs. The deduced bovine deoxyhypusine hydroxylase protein is 87% identical to human enzyme and 45% identical to yeast enzyme. The overexpressed enzyme showed activity in catalyzing the hydroxylation of the deoxyhypusine residue in the eIF5A intermediate. An amino acid substitution from Glu 57 to Gly located at one of the four conserved His-Glu (HE) pairs, the potential metal coordination sites, resulted in severe reduction of deoxyhypusine hydroxylase activity. A deletion at the HEAT-repeats 1-3 resulted in complete losses of deoxyhypusine hydroxylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号