首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present data on vascular plant species richness, at the 0.1 ha scale and below, of sclerophyll vegetation on infertile sandstone, and some neighbouring types, in a non-mediterranean climate area of temperate, east coast Australia The vegetation of sandstone is richer in species than is that of a permanently wet swamp (18/0.1 ha) or of more fertile soils (36, s.d.- 2). On sandstone, woodlands on moderate benched slopes (77, s.d. = 9) are richer in species than are the scrubs found on skeletal (56, s.d.= 7) or impeded drainage (48, s.d.= 8) soils, and this difference appears in the species-area curve from 100 m2 up. Species richness of the sandstone vegetation, like its growth-form mix, is very similar to species richness of South African fynbos and southwestern Australian heath. which supports the idea that the community properties of this sort of vegetation are not determined by climate but are determined by soils. The strong contrast in species richness, noted by Naveh & Whittaker (1979), between the mediterranean-climate vegetation of South Africa and southwestern Australia on the one hand, and California and Israel on the other, need not be attributed to different evolutionary histories of the floras. The present environment, in the form of the soil factor, could well be the main determinant.  相似文献   

2.
Succession after fire and bushcutting in coastal dune fynbos was monitored for two and a half years and comparisons were made with adjacent, mature (13 year-old) fynbos. Sixty-two to 68% of pre-disturbance species, including all the dominants, were found in the successional communities 1.5 yr after disturbance: the patterns thus fitted the initial floristic composition model. On the more mesic south facing slope, post-fire succession differed from the north-facing (burnt) and bushcut sites in that ordinations showed a clear separation between the mature and successional communities. This difference was due to the post-fire abundance on the southfacing slope site of short-and medium-lived species not present in the mature fynbos. One and a half years after disturbance, species richness and equitability had increased relative to mature vegetation. This increase was greatest for the south facing slope where short-and medium-lived species and juveniles of pre-disturbance dominants co-occurred. In general, successional patterns were consistent with those described for other fynbos and fire-prone mediterranean shrublands.  相似文献   

3.
New data are reported, and literature data compiled, for species richness in 0.1 ha plots in Australian vegetation. We conclude that on present evidence the same vegetation types are rich, and the same types poor, at a 0.1 ha scale, in Australia as elsewhere. Tropical rainforest averages 140 species per 0.1 ha in permanently humid types. Temperate sclerophyll shrub-dominated types on low-nutrient soils are generally in the range 50–100 species, with open woodlands somewhat richer than scrublands. Warm semi-desert shrublands can have 50–80 species, counting ephemerals both of summer and of winter. Temperate closed forests generally have fewer than 50 species per 0.1 ha. For none of these types is there clear evidence that they are richer or poorer in species at a 0.1 ha scale than types in similar environments with similar growth-form mixes on other continents. We give data for grassy woodlands and sclerophyll scrublands in the monsoonal tropics; the fragments of data on such types available from other continents suggest there may be a wide range of species richness in sub-types of this very broad grouping. Generally, available data do not support the idea that floristic evolutionary history is a strong influence on the species richness of vegetation at the 0.1 ha scale, relative to the influence of the present-day climatic and soil environment.The National Parks and Wildlife Service of N.S.W. gave permission to work in National Parks. Getty Pty. Ltd., Central Coast Mining N.L., Mount Isa Mines Ltd. and Denison Australia Pty. Ltd. supported work on their mining leases. The staff of Fowlers Gap Research Station were always hospitable. The Herbarium Australiense and the herbaria of N.S.W., Sydney University, the Northern Territory and Queensland helped with identifications. We thank D. J. Parsons, C. Zammit, R. K. Peet, W. E. Westman and R. H. Whittaker for comments and unpublished data. We wish particularly to record our debt to the late Professor Whittaker, who encouraged this work.  相似文献   

4.
W. J. Bond  J. Midgley  J. Vlok 《Oecologia》1988,77(4):515-521
Summary According to the equilibrium theory of island biogeography, insularisation will lead to species loss from habitat remnants. Extinctions will continue untill species number equilibrates at a level appropriate for the size and isolation of the island remnants. We tested whether insularisation leads to species loss by comparing plant species numbers on islands of fynbos shrublands surrounded by Afrotemperate evergreen forest with extensive mainland tracts of fynbos. Species area curves for islands and subsamples of mainland had significantly different slopes (z island=0.43, z mainland=0.16). Small islands had the fewest species (less than one fifth) relative to mainland samples of similar size. The species area curves intersect at 590 ha so that reserve sizes of this order of magnitude are needed to avoid species losses relative to extensive areas of fynbos.We compared traits of species on islands and mainlands to determine processes most affected by insularisation. Island floras did not differ from the mainland in the mix of dispersal types, pollinator syndromes or proportion of dioecious species. Islands did have significantly fewer species of low stature and significantly more species that survive fire only as seed and not by resprouting. We infer that the main cause of species loss is change in disturbance frequency. Islands have fewer fires and lose species dependent on frequent fires. We predict that island effects could be reduced by judicious fire management of small reserves.  相似文献   

5.
6.
Aim To determine the best‐fit model of species–area relationships for Mediterranean‐type plant communities and evaluate how community structure affects these species–area models. Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean‐climate regions. Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi‐log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series. Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The potential for community reassembly is greater in Californian shrublands where only a quarter of the flora resprout, whereas three quarters resprout in Australian heathlands. Other Californian vegetation types sampled include coniferous forests, oak savannas and desert scrub, and demonstrate that different community structures may lead to a similar species–area relationship. Dominance–diversity relationships for coniferous forests closely follow a geometric model whereas associated oak savannas show a close fit to the lognormal model. However, for both communities, species–area curves fit a power model. The primary driver appears to be the presence of annuals. Desert scrub communities illustrate dramatic changes in both species diversity and dominance–diversity relationships in high and low rainfall years, because of the disappearance of annuals in drought years. Main conclusions Species–area curves for immature shrublands in California and the majority of Mediterranean plant communities fit a power function model. Exceptions that fit the exponential model are not because of sampling error or scaling effects, rather structural differences in these communities provide plausible explanations. The exponential species–area model may arise in more than one way. In the highly diverse Australian heathlands it results from a rapid increase in species richness at small scales. In mature California shrublands it results from very depauperate richness at the community scale. In both instances the exponential model is tied to a preponderance of perennials and paucity of annuals. For communities fit by a power model, coefficients z and log c exhibit a number of significant correlations with other diversity parameters, suggesting that they have some predictive value in ecological communities.  相似文献   

7.
The study was carried out in two sample plots which were set in two regions where the vegetation was protected for 8 and 3 years.The results of DCA (Detrended Correspondence Analysis) showed that the vegetation on the north or northwest aspects in Yunmeng Mountain (Quercus liaotungensis coppice and Spiraea trilobata scrubs) has no systematic floristic difference from the vegetation which existed in the same area in 1964 with the approximate aspect under human disturbance, no matter whether they were protected for 8 or 3 years. In south and southeast slopes (Vitex negundo var. heterophylla community), the protected shrublands have larger species diversities than that of the shrublands in 1964. In addition, there is no significant difference between the communities which were protected for different periods of time. However, the number of species in protected area is larger than that in unprotected area. Furthermore, the community which is under a longer period of protection developes larger diversity. The north slopes have more species than the south slopes.The protection is helpful for communities to develope their biomass. The biomass of scrubs on the north slope is much greater than that on the south in the site where the vegetation is protected for 8 years, as well as in the site under 3 years protection. In contrast, due to the larger coverage of the scrubs on north slopes, the biomass of herbage on the south slope is much greater than that on the north slope in both sites. When compared with the biomass of the shrublands in unprotected area, the increase of biomass shows the efficiency of protection. The aboveground biomass of scrubs in both site are 2.8 and 2.2 times greater than that in unprotected area. The ratio of the total aboveground biomass of Site 1, Site 2 and the unprotected area is 2.5:2.2:1 on south aspect.  相似文献   

8.
Summary Vegetation patterns were examined in three regions of coniferous forest, arrayed along a gradient of decreasing maritime influence. The following responses to decreasing maritime influence were noted: all aspects of species diversity increase; growth-form complexity increases; habitat heterogeneity increases; species habitat breadths decrease; and habitat overlaps decrease. These observations result from studies of both individual plots and data aggregated into community types. The contrasts between the maritime western study region and the more continental eastern study region imply that ecotope differentiation increases from west to east.The enhanced structural complexity of the eastern region results from climatical limitation of the dominant tree species. Reduced canopy dominance produces greater within-habitat heterogeneity with respect to moisture, light, and soil properties. Furthermore, contrasts between the extremes of the topographic-moisture gradient increase toward the east. These factors combine to increase alpha, beta, and gamma diversities in the eastern study region above those of the western study region. Corresponding to these diversity trends are decreasing mean relative niche, habitat, and ecotope breadths of species toward the eastNomenclature is that of Hitchcock & Cronquist (1973).Funds for the study were provided in part by the Graduate School Research Fund, University of Washington. We thank Alan F. Watson, B.C. Cannon, S.G. Fleming, C. Brewer, K.E. Wade, K. Loughney, and M. Swanson for their able field assistance and Joan Canfield for assistance with data analysis. R.H. Whittaker, R.K. Peet, and an anonymous reviewer made valuable suggestions.  相似文献   

9.
Diversity was studied in 10 communities, including the understory of native oak woodland, planted woodlands (pine and eucalypt), and shrublands in the strict sense (heathlands, broom shrublands, gorse shrublands).In each community, species richness, diversity, dominance and evenness were analysed. Differences were observed among communities with regard to species composition, richness in annual herbs, perennial herbs and shrubs, dominant plant families (Ericaceae, Papilionaceae) and diversification of shrub species.The possible relations between environmental stress and/or human influences on differences in diversity are discussed.  相似文献   

10.
In response to geohistorical events from the Mesozoic through the Tertiary with contraction of mesic forest to southwestern and eastern montane and coastal regions, and expansion of woodlands and xeric shrublands, nobreak Australian spiders today comprise relict families and genera (confined to Gondwanan habitats and refuges) along with later evolved representatives which have adapted to changing environments. Tropical relicts also persist in refugia in the arid interior while some spiders (both mygalomorphs and araneomorphs) have adapted to arid conditions, mainly through specialized behaviours. Although fire has become increasingly a phenomenon of the Australian environment it is doubtful whether any spiders are adapted to fire per se. European settlement has impacted differentially on relictual and later evolved representatives; a few species, including the funnelweb (Atrax robustus) and redback spider (Latrodectus hasselti) have benefited through enhanced habitat opportunities and some species of Badumna and other genera have become synanthropic. It is suggested that conservation strategies need to consider the ecoevolutionary history of particular spiders and their natural vulnerability or resilience to environmental factors.  相似文献   

11.
Species-area curves are presented for three woodlands with herbaceous understoreys in western Victoria. Australia. Up to 93 species of vascular plant were recorded from 128 m2. making these woodlands one of the richest terrestrial vegetations recorded from temperate Australia. Species richness at this scale is comparable with that recorded from kwongan (sclerophyllous shrubland) in south-western Australia. Up to 45 species were recorded from 10 m2. At this scale the woodlands are the richest terrestrial vegetation recorded from Australia, and among the richest in the world, being comparable with the renowned chalk grasslands of Europe. The growth-form spectra of these woodlands differ dramatically from those of other species rich communities in temperate Australia due to the abundance of herbs and dearth of woody species. In contrast to species rich woodlands in Israel and California, perennial herbs rather than annuals predominate. Although the woodlands studied are protected in conservation reserves, regional floristic surveys are required to determine the geographic extent, floristic variability and conservation status of herb-rich woodlands in Victoria.  相似文献   

12.
Insect diversity in Cape fynbos and neighbouring South African vegetation   总被引:1,自引:0,他引:1  
Aim  It has often been suggested that South Africa's Cape fynbos shrublands, although extremely rich in plant species, are poor in insects, thus representing a notable exception from the broad plant–insect diversity relationship. The aims of this study were to compare the diversity patterns of plant-inhabiting insects in fynbos and the vegetation of three neighbouring biomes (grassland, subtropical thicket, and Nama-karoo), and to test for a general relationship between plant diversity and insect diversity across these biomes.
Location  South-western to south-eastern South Africa.
Methods  We conducted seasonal plant surveys and sweep insect sampling in 10 × 10 m plots in the Baviaanskloof Conservation Area (Eastern Cape), where all four biomes occur. We also conducted once-only collections in the core area of each biome.
Results  Fynbos plots had insect diversity values similar to those of grassland and subtropical thicket (a dense, evergreen and spinescent shrubland with a high abundance of succulents and climbers), and significantly higher than Nama-karoo (an open, semiarid shrubland). A remarkably strong positive relationship was found between plant and insect species richness.
Main conclusions  Previous generalizations were based on a few insect groups (e.g. butterflies, under-represented in fynbos), but ignored published results on other groups (e.g. galling insects, which are in fact over-represented in this vegetation). We show that, overall, insect diversity in fynbos is comparable to that of neighbouring biomes. Fynbos vegetation does not represent a significant exception from the broad positive relationship between plant diversity and insect diversity.  相似文献   

13.
Understanding the biodiversity of functionally important communities in Earth’s ecosystems is vital in the apportionment of limited ecosystem management funds and efforts. In southern California shrublands, which lie in a global biodiversity hotspot, biological soil crusts (BSCs) confer critical ecosystem services; however, their biodiversity remains unknown. In this study, six sites (n = 4 each, 25 m2) were established along a mediterranean shrubland environmental gradient in southern California. Here, the biodiversity of all BSC-forming lichens and bryophytes was evaluated, related to environmental traits along the gradient, and compared to species richness among North American ecosystems supporting BSCs (data from previous studies). In total, 59 BSC-forming lichens and bryophytes were observed, including the very rare Sarcogyne crustacea, a rare moss, and five endemic lichen species. Over half (61%) of the species observed were found at a single site. Along the gradient, species evenness of late-successional BSC was related to dew point and elevation, and both evenness and richness were related to distance to coast. Using an ordination analysis, five distinct late-successional BSC communities were identified: Riversidian, Spike moss, Casperian, Alisian, and Lagunian. Twenty-five lichens and 19 bryophytes are newly reported for North American BSC-forming organisms, now comprising ~1/2 of the North American total. BSCs in North American hot and cold deserts were approximately 4.0 and 2.4 times less species rich than BSCs found in southern California shrublands, respectively. Given the anthropogenic impacts on quality and distribution of California mediterranean shrublands, our results show that these sites represent important refugia of BSC species in this globally important region.  相似文献   

14.
A minimum variance cluster analysis of 87 species of vascular plants occurring in south Siberian birch woodlands, based on their total distribution ranges, grouped them into 9 phytogeographic elements. The main distribution patterns of each element are illustrated by means of maps obtained by automatic mapping programs, showing the joint occurrence of the species of each element on a world scale. The results indicate a predominance of Eurasiatic-temperate taxa. The south Siberian birch woodlands can be considered as the easternmost extensions of the European deciduous forest belt, which in Siberia is compressed between the taiga biome in the north and the steppe biome in the south. The marginal position of Siberian Betula stands is reflected by the persistence of plants which are ecologically marginal with respect to true forest vegetation; most of the Eurasiatic species are typical, in Europe, of forest-meadows and forest-margins.  相似文献   

15.
Non-native tree invasions occur not only in woodland or forest vegetation, but also into areas with little or no native tree presence. Limiting factors for tree establishment and survival include seasonal or annual drought, low nutrient availability, cold temperature extremes, fire, and other abiotic conditions to which trees are poorly adapted as well as biotic conditions such as herbivory and lack of soil mutualist inoculum. Tree invasions of grasslands and semi-arid riparian areas in particular are now widespread and frequently result in the rapid conversion of these habitats to woodlands or forests. In some cases, these invasions are the result of a change in extrinsic conditions such as climate, fire, and/or grazing that remove what have been previous barriers to tree establishment. However, in other cases, tree species with particular life-history and dispersal traits fill open niches or outcompete native species. Significant examples of tree invasion into treeless areas can be seen with invasions of Pinus species into temperate grasslands and fynbos shrublands, Melaleuca quinquenervia and Triadica sebifera into grassy wetlands, Prosopis and Tamarix species into semi-arid riparian zones, and Acacia and Morella invasions into nutrient-poor shrublands and barrens. The establishment of trees into treeless areas may have strong impacts on ecosystem processes, influencing biogeochemical cycling, carbon sequestration and cycling, and ecohydrology, as well possible edaphic legacies that persist even if trees are removed.  相似文献   

16.
Aim The aim of this paper is to analyse fossil charcoal deposits, largely identified to the species level and spanning a sequence from the late Holocene to < 40,000 BP , in order to reconstruct Late Quaternary vegetation and climatic patterns in the western (winter-rainfall) fynbos biome of South Africa. Location The charcoals were excavated from the Elands Bay Cave (32°19S, 18°20E) on the semiarid (200–250 mmyr?1), winter-rainfall coastline of the western fynbos biome. Methods Patterns in the charcoal data set over time were sought by manual sorting of the charcoal×sample matrix, as well as by subjecting the data to multivariate analysis. Palaeoclimatic reconstruction was attempted by comparing the climatic controls on contemporary vegetation communities that resembled the fossil assemblages. Charcoal diversity was modelled using sample age and number of charcoal fragments as explanatory variables. Results The fossil assemblages ranged from xeric communities (similar to those presently occurring at the site) during the Holocene, to more mesic thicket and fynbos vegetation in the terminal Pleistocene, to Afromontane forest and riverine woodland communities after about 18,000 BP . Diversity of the charcoal samples increased monotonically with increasing sample age. Main conclusions The results suggest that, unlike the eastern fynbos biome, which is under fundamentally different climatic controls, soil moisture conditions in the western part of the biome were higher in the Last Glacial than during the Holocene. This scenario may help to explain the higher regional richness and associated diversification in the western than eastern part of the biome.  相似文献   

17.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

18.

Aims

This study aimed at assessing whether patch type (i.e., under-shrub soil patch and inter-shrub soil patch) has an effect on soil microbes and how different shrub species altered the soil microbes through understanding soil microbial activity, biomass, and community structure.

Methods

We characterized the soil microbes in under-shrub and inter-shrub soil patches in three shrublands (Artemisia ordosica, Salix psammophila, and Caragana microphylla), respectively, in the Mu Us Desert, China, using microbial activity indicators, chloroform fumigation-extraction analysis, and high-throughput 16S rRNA gene sequencing.

Results

Members of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes, and Gemmatimonadetes were dominant. Inter-shrub soil patch differed from under-shrub soil patch in soil bacterial composition, microbial enzyme activity, and biomass, but not in diversity. Soil collected in A. ordosica shrubland exhibited the highest microbial enzyme activity, biomass, and diversity. Shrub species had significant effects on community structure, primarily the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes.

Conclusions

The results indicated that both shrub species and patch type had effects on soil microbial communities. In shrub-dominated desert ecosystems, spatial heterogeneity of soil nutrients and moisture might not be the main factors underlying variations in bacterial diversity. The different compositions of microbial communities in various shrublands provide a foundation for further research into the mechanisms of soil organic carbon accumulation.
  相似文献   

19.
Abstract. The theory of convergence predicts that, given similar selective regimes, both present and past, unrelated ecological communities will show similar attributes. Mild Pleistocene climate, highly infertile soils, and similar fire regimes explain the remarkable convergence between mediterranean‐type vegetation from South Africa (fynbos) and Australia (kwongan). Heathlands in the Aljibe Mountains, at the western end of the Mediterranean basin, constitute a single vegetation type within the Mediterranean region. We studied the association between endemism and plant life form in a flora from environmentally similar areas of the South African Cape region (fynbos) and the Aljibe Mountains by contingency table analysis. We included two non‐acid, neighbouring areas to the latter region in the analysis as contrasts. We also compared the patterns of variation in three components of biodiversity (species richness, endemism level and taxonomic singularity) of fynbos and Aljibe heathland woody plant communities along similar soil fertility gradients by means of two‐way ANOVAs. At the regional (flora) level, our results show two common features in the biological aspects of endemism between the two regions: (1) edaphic endemism and (2) association of endemism with the shrub growth form. At the community level, we detected strong similarities in the patterns of variation of endemism and taxonomic singularity of woody communities from both regions along an ecological gradient related to soil fertility. We interpret these similarities, both at the regional and community levels, as suggestive of convergence between fynbos and Aljibe heathland.  相似文献   

20.
Background: Heathlands are relatively abundant in the landscape of the western Mediterranean region, especially in the Strait of Gibraltar region, where it is locally known as herriza. They are associated with a mild Mediterranean climate regime and with acid, nutrient-poor soils. They harbour a high plant diversity, often viewed as a consequence of the transition between European Atlantic heathland and Mediterranean sclerophyllous shrubland floras.

Aims: To determine whether species-rich Mediterranean heathlands, including the herriza, constitute distinct heathland formations rather than transitional vegetation units between Atlantic heathlands and Mediterranean garrigue shrublands.

Methods: We quantified species richness, endemism and analysed the β-diversity of the woody component of Mediterranean heathland communities throughout its geographic range, with special emphasis on the Strait of Gibraltar region.

Results: Mediterranean heathlands, including the herriza, are not transitional communities between Atlantic heathlands and Mediterranean shrublands. Woody species richness and, particularly, endemic richness was the highest in the herriza.

Conclusions: The high biodiversity values of the herriza are a likely consequence of the ecological singularity of the Strait of Gibraltar region and its known role as a glacial refugium. Despite its treeless feature, the herriza deserves special recognition and protection from both in its European and North African extension.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号