首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanics of multi-joint posture and movement control   总被引:15,自引:0,他引:15  
  相似文献   

2.
Mechanical analysis of the landing phase in heel-toe running.   总被引:3,自引:0,他引:3  
Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining these segments were monitored using 200 Hz video analysis. Information about the ground reaction force vector was collected using a force plate. Segment kinematics were combined with ground reaction force data for calculation of the net intersegmental forces and moments. The vertical component of the ground reaction force vector Fz was found to reach a first peak approximately 25 ms after touch-down. This peak occurs because, in the support leg, the vertical acceleration of the knee joint is not reduced relative to that of the ankle joint by rotation of the lower leg, so that the support leg segments collide with the floor. Rotation of the support upper leg, however, reduces the vertical acceleration of the hip joint relative to that of the knee joint, and thereby plays an important role in limiting the vertical forces during the first 40 ms. Between 40 and 100 ms after touch-down, the vertical forces are mainly limited by rotation of the support lower leg. At the instant that Fz reaches its first peak, net moments about ankle, knee and hip joints of the support leg are virtually zero. The net moment about the knee joint changed from -100 Nm (flexion) at touch-down to +200 Nm (extension) 50 ms after touch-down. These changes are too rapid to be explained by variations in the muscle activation levels and were ascribed to spring-like behavior of pre-activated knee flexor and knee extensor muscles. These results imply that the runners investigated had no opportunity to control the rotations of body segments during the first part of the contact phase, other than by selecting a certain geometry of the body and muscular (co-)activation levels prior to touch-down.  相似文献   

3.
The volume displacements of the rib cage and abdomen of relaxed seated subjects were measured as functions of pleural pressure with the chest wall expanded by airway pressure and with the chest wall distorted by an external force applied to the rib cage. From the measured displacements for the two independent loads, the three compliances that describe the mechanical properties of the relaxed chest wall modeled as a linear elastic system with two degrees of freedom were obtained. The cross compliance that describes the coupling between the rib cage and abdomen was found to be small and positive, 0.01-0.02 1/cmH2O. The displacement of the rib cage by the external force was consistent with the displacement predicted by use of standard methods for calculating the mechanical advantage of the force.  相似文献   

4.
To measure impedance one measures or estimates flow, which is commonly done by measuring the pressure drop across a pneumotachometer. The frequency response characteristics of standard pneumotachometer/pressure transducers (PPT) limit their use to relatively low frequencies. Also, the frequency response of PPTs has been reported to be "load" dependent. Thus, the frequency response characteristics measured under "no-load" conditions, which theoretically could be used to compensate subsequent measurements, may not be appropriate for measurements made under loaded conditions. Another method of measuring impedance exists which depends on a reference impedance element other than a pneumotachometer. In this method, an oscillatory flow signal with known amplitude is generated and used to force the system being tested. Unlike PPTs, this oscillatory flow generator (OFG) is a closed system that allows measurements to be made only during breath holding. Our objective was to determine whether the frequency response of a PPT could be compensated using measurements made under no-load conditions, such that it accurately measured an impedance load. The frequency response of the PPT under no-load conditions was measured by the OFG and used to compensate the output of the PPT in subsequent impedance measurements. The compensated PPT was used to measure the impedance of a mechanical structure and the impedances of four human subjects. The impedances of the mechanical structure and the subjects were also measured using the OFG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Mechanism of thixotropic behavior at relaxed joints in the rat   总被引:1,自引:0,他引:1  
When a relaxed joint is subjected to a small sinusoidal torque, the amplitude of the steady-state displacement response is increased up to severalfold by a transient larger perturbation. The original state, in which the relaxed joint is unexpectedly stiff, is restored by several seconds of inactivity. This thixotropic phenomenon has previously been observed in a variety of human joints. We have now investigated the mechanism of thixotropic behavior at relaxed joints in rats anesthetized with pentobarbital sodium, by using a series of preparations including the intact ankle joint, a blood-perfused soleus muscle preparation, an isolated soleus muscle, and ankle joint isolated by severing all muscular attachments. Thixotropic behavior was observed in all intact, isolated muscle, and isolated joint preparations. The contribution of the joint to thixotropic behavior was comparable to, and at times exceeded, the contribution of muscle. We also analyzed the short-range stiffness properties of relaxed, blood-perfused soleus muscles and found them to be similar to thixotropy with respect to range of action (0.2-0.3% of muscle length), elastic modulus (approximately 4 kg/cm2), and time course for redevelopment (time constant = 2.5 s at 34 degrees C). Thus thixotropic behavior at a relaxed joint may be attributed both to the joint structures and to short-range stiffness of muscles acting at the joint.  相似文献   

6.
Ahn J  Hogan N 《PloS one》2012,7(3):e31767
The control architecture underlying human reaching has been established, at least in broad outline. However, despite extensive research, the control architecture underlying human locomotion remains unclear. Some studies show evidence of high-level control focused on lower-limb trajectories; others suggest that nonlinear oscillators such as lower-level rhythmic central pattern generators (CPGs) play a significant role. To resolve this ambiguity, we reasoned that if a nonlinear oscillator contributes to locomotor control, human walking should exhibit dynamic entrainment to periodic mechanical perturbation; entrainment is a distinctive behavior of nonlinear oscillators. Here we present the first behavioral evidence that nonlinear neuro-mechanical oscillators contribute to the production of human walking, albeit weakly. As unimpaired human subjects walked at constant speed, we applied periodic torque pulses to the ankle at periods different from their preferred cadence. The gait period of 18 out of 19 subjects entrained to this mechanical perturbation, converging to match that of the perturbation. Significantly, entrainment occurred only if the perturbation period was close to subjects' preferred walking cadence: it exhibited a narrow basin of entrainment. Further, regardless of the phase within the walking cycle at which perturbation was initiated, subjects' gait synchronized or phase-locked with the mechanical perturbation at a phase of gait where it assisted propulsion. These results were affected neither by auditory feedback nor by a distractor task. However, the convergence to phase-locking was slow. These characteristics indicate that nonlinear neuro-mechanical oscillators make at most a modest contribution to human walking. Our results suggest that human locomotor control is not organized as in reaching to meet a predominantly kinematic specification, but is hierarchically organized with a semi-autonomous peripheral oscillator operating under episodic supervisory control.  相似文献   

7.
The primary aim of this study was to implement a rheological model of the mechanical behavior of the passive musculo-articular complex (MAC). The second objective was to adapt this model to simulate changes in the passive MAC's mechanical properties induced by passive stretching protocols commonly performed in sport and rehabilitation programs. Nine healthy subjects performed passive ankle dorsi-flexion and plantar-flexion cycles at different velocities (from 0.035 to 2.09 rad s?1) on an isokinetic dynamometer. This procedure enabled the articular angle to be controlled and the passive torque developed by the MAC in resistance to stretch to be measured. Our rheological model, dependent on nine parameters, was composed of two non-linear (exponential) springs for both plantar- and dorsi-flexion, a linear viscoelastic component and a solid friction component. The model was implemented with the Simulink software package, and the nine parameters were identified, for each subject, by minimizing the square-difference between experimental torque–angle relationships and modeled curves. This model is in good agreement with experiment, whatever the considered stretching velocity. Finally, the model was adapted to incorporate static stretching (4×2.5 min) and cyclic stretching (five loading/unloading cycles) protocols. Our results indicate that the model could be used to simulate the effects of stretching protocols by adjusting a single (different) parameter for each protocol.  相似文献   

8.
The use of biomechanical methods to quantify functional/physiological parameters in malnourished humans can provide new insights into the understanding of effects of malnutrition on human muscles. Therefore, a transportable ankle ergometer device was developed, which allows the quantification of mechanical properties of the human plantarflexor muscles in field experiments. More precisely, the ergometer quantifies isometric force in static conditions and musculotendinous stiffness in dynamic conditions. This latter parameter is obtained by the quick-release technique. The aim of the study was first to conduct a reproducibility study on musculotendinous stiffness. Seven healthy subjects were tested three times in alternate days. The results showed the well-known linear relationship between musculotendinous stiffness and torque, where the slope was used as a stiffness index (SI(MT)). Individual regression line comparison indicated that SI(MT) values were not significantly different between the three repeated measurements (P>0.05). Mean coefficient of variation was 4.5+/-1.0%. The individual SI(MT) data were within the range of those reported in the literature. The reproducibility study showed that the quantification of musculotendinous stiffness by means of the quick-release technique is a reliable method, using a transportable ankle ergometer device.  相似文献   

9.
《IRBM》2009,30(1):20-29
This work aims to model the mechanical behavior of the musculoarticular complex (MAC). First, the implementation and the validation of original methodologies have enabled to assess elasticity, viscosity and friction of the MAC. The effects of cyclic and static stretching on these properties were then assessed. Changes in MAC mechanical properties induced by static stretching could mainly be explained by an acute increase in muscle lengths, while dissipative properties and stiffness of the MAC are only modified after cyclic stretching. Our results enable to suggest and discuss about some mechanisms probably implied in these adaptations. Finally, a rheological model was proposed and validated to model the mechanical behavior and the adaptations induced by cyclic and static stretching assessed in our studies. This model could then be used to simulate the effects of specific protocols performed for instance in sports or functional rehabilitation.  相似文献   

10.
Kim S  Park S 《Journal of biomechanics》2011,44(7):1253-1258
Bipedal walking models with compliant legs have been employed to represent the ground reaction forces (GRFs) observed in human subjects. Quantification of the leg stiffness at varying gait speeds, therefore, would improve our understanding of the contributions of spring-like leg behavior to gait dynamics. In this study, we tuned a model of bipedal walking with damped compliant legs to match human GRFs at different gait speeds. Eight subjects walked at four different gait speeds, ranging from their self-selected speed to their maximum speed, in a random order. To examine the correlation between leg stiffness and the oscillatory behavior of the center of mass (CoM) during the single support phase, the damped natural frequency of the single compliant leg was compared with the duration of the single support phase. We observed that leg stiffness increased with speed and that the damping ratio was low and increased slightly with speed. The duration of the single support phase correlated well with the oscillation period of the damped complaint walking model, suggesting that CoM oscillations during single support may take advantage of resonance characteristics of the spring-like leg. The theoretical leg stiffness that maximizes the elastic energy stored in the compliant leg at the end of the single support phase is approximated by the empirical leg stiffness used to match model GRFs to human GRFs. This result implies that the CoM momentum change during the double support phase requires maximum forward propulsion and that an increase in leg stiffness with speed would beneficially increase the propulsion energy. Our results suggest that humans emulate, and may benefit from, spring-like leg mechanics.  相似文献   

11.
This study presented a method to identify ankle sprain motion from common sporting activities by dorsal foot kinematics data. Six male subjects performed 300 simulated supination sprain trials and 300 non-sprain trials in a laboratory. Eight motion sensors were attached to the right dorsal foot to collect three-dimensional linear acceleration and angular velocity kinematics data, which were used to train up a support vector machine (SVM) model for the identification purpose. Results suggested that the best identification method required only one motion sensor located at the medial calcaneus, and the method was verified on another group of six subjects performing 300 simulated supination sprain trials and 300 non-sprain trials. The accuracy of this method was 91.3%, and the method could help developing a mobile motion sensor system for ankle sprain detection.  相似文献   

12.
The locations of the joint axes of the ankle complex vary considerably between subjects, yet no noninvasive method with demonstrated accuracy exists for locating these axes. The moments of muscle and ground reaction forces about the joint axes are dependent on axis locations, making knowledge of these locations critical to accurate musculoskeletal modeling of the foot and ankle. The accuracy of a computational optimization method that fits a two-revolute model to measured motion was assessed using computer-generated data, a two-revolute mechanical linkage, and three lower-leg cadaver specimens. Motions were applied to cadaver specimens under axial load while bone-mounted markers attached to the tibia, talus, and calcaneus were tracked using a video-based motion analysis system. Estimates of the talocrural and subtalar axis locations were computed from motions of the calcaneus relative to the tibia using the optimization method. These axes were compared to mean helical axes computed directly from tibia, talus, and calcaneus motions. The optimization method performed well when the motions were computer-generated or measured in the mechanical linkage, with angular differences between optimization and mean helical axes ranging from 1 deg to 5 deg. In the cadaver specimens, however, these differences exceeded 20 deg. Optimization methods that locate the anatomical joint axes of the ankle complex by fitting two revolute joints to measured tibia-calcaneus motions may be limited because of problems arising from non-revolute behavior.  相似文献   

13.
Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.  相似文献   

14.
Acceptance of the klap speed skate was fully realized on the world speed skating scene in 1997. However, one of the most important unknowns regarding the klapskate was the positioning of the point of foot rotation (pivot point), which is believed to play an important role in optimizing klapskate performance. The purposes of this study were to explore the ankle, knee, and hip joint mechanical changes that occurred when the pivot point location was modified, and to determine whether maximal ankle torques provide predictive ability as to where the optimal pivot point positioning is for a skater. We tested 16 proficient skaters at three pivot point PP) locations, ranging from just in front of the metatarsal-phalangeal joint to just in front of the first phalangeal joint. Of the 16 skaters, 10 were tested at a fourth position; tip of the toe. Push phase kinetics and kinematics were measured on a modified slide board. The optimal PP for each skater was defined as the position that allowed him to generate the most total push energy. Maximum voluntary static torque measures of the ankle and knee were collected on a Biodex dynamometer. Overall, anterior pivot point shifting led to a significant increase in ankle energy generated and a decrease in knee energy generated, with no significant change at the hip joint. We found no significant correlations between the static strength measures and the skaters' optimal pivot points.  相似文献   

15.
A novel method for direct measurement of the state of skeletal muscle contraction is introduced called magnetic resonance elastography (MRE). Such a technique is useful for avoiding the indeterminacy inherent in most inverse dynamic models of the musculoskeletal system. Within a standard MRI scanner, mechanical vibration is applied to muscle via the skin, creating shear waves that penetrate the tissue and propagate along muscle fibers. A gradient echo sequence is used with cyclic motion-encoding to image the propagating shear waves using phase contrast. Individual muscles of interest are identified and the shear wavelength in each is measured. Shear wavelength increases with increasing tissue stiffness and increasing tissue tension.

Several ankle muscles were tested simultaneously in normal subjects. Applied ankle moment was isometrically resisted at several different foot positions. Shear wavelengths in relaxed muscle in neutral foot position was 2.34±0.47 cm for tibialis anterior (TA) and 3.13±0.24 cm for lateral gastrocnemius (LG). Wavelength increased in relaxed muscle when stretched (to 3.80±0.28 cm for TA in 45° plantar-flexion and to 3.95±0.43 cm for LG in 20° dorsi-flexion). Wavelength increased more significantly with contraction (to 7.71±0.97 cm in TA for 16 N m dorsi-flexion effort and to 7.90±0.34 cm in LG for 48 Nm plantar-flexion effort).

MRE has been shown to be sensitive to both passive and active tension within skeletal muscle making it a promising, noninvasive tool for biomechanical analysis. Since it is based on MRI technology, any muscle, however deep, can be interrogated using equipment commonly available in most health care facilities.  相似文献   


16.
We investigated the effect of a static magnetic field (0.1 T) on various electrical parameters of goat eye lens using a computer-aided AC impedance system (EG&G 278) at 30°C. Results of measurements on voltage-current characteristics showed that the static magnetic field alters the current flow in the tissue. The complex impedance plane drawn between real (Z') and imaginary (Z) parts in the form of a Cole-Cole plot demonstrates that under magnetic field, the distribution factor a decreases from 0.3 ± 0.006 to 0.24 ± 0.005 and the extracellular resistance (Re) increases from 52 ± 1.3 to 60 ± 1.5 K ohms in the lens tissue. An attempt has been made to explain the interactive behavior of the magnetic field with the electrical changes in the lens.  相似文献   

17.
Ankle function is frequently measured using static or dynamic tasks in normal and injured patients. The purpose of this study was to develop a novel task to quantify ankle dynamics and muscle activity in normal subjects. Twelve subjects with no prior ankle injuries participated. Video motion analysis cameras, force platforms, and an EMG system were used to collect data during a lateral hop movement task that consisted of multiple lateral-medial hops over an obstacle. Mean (SD) inversion ankle position at contact was 4.4° (4.0) in the medial direction and -3.5° (4.4) in the lateral direction; mean (SD) tibialis anterior normalized muscle activity was 0.11 (0.08) in the medial direction and 0.16 (0.13) in the lateral direction. The lateral hop movement was shown to be an effective task for quantifying ankle kinematics, forces, moments, and muscle activities in normal subjects. Future applications will use the lateral hop movement to assess subjects with previous ankle injuries in laboratory and clinical settings.  相似文献   

18.
The morphology of the bones, articular surfaces and ligaments and the passive mechanical characteristics of the ankle complex were reported to vary greatly among individuals. The goal of this study was to test the hypothesis that the variations observed in the passive mechanical properties of the healthy ankle complex are strongly influenced by morphological variations. To evaluate this hypothesis six numerical models of the ankle joint complex were developed from morphological data obtained from MRI of six cadaveric lower limbs, and from average reported data on the mechanical properties of ligaments and articular cartilage. The passive mechanical behavior of each model, under a variety of loading conditions, was found to closely match the experimental data obtained from each corresponding specimen. Since all models used identical material properties and were subjected to identical loads and boundary conditions, it was concluded that the observed variations in passive mechanical characteristics were due to variations in morphology, thus confirming the hypothesis. In addition, the average and large variations in passive mechanical behavior observed between the models were similar to those observed experimentally between cadaveric specimens. The results suggest that individualized subject-specific treatment procedures for ankle complex disorders are potentially superior to a one-size-fits-all approach.  相似文献   

19.
This study investigated the energetics of the human ankle during the stance phase of downhill walking with the goal of modeling ankle behavior with a passive spring and damper mechanism. Kinematic and kinetic data were collected on eight male participants while walking down a ramp with inclination varying from 0° to 8°. The ankle joint moment in the sagittal plane was calculated using inverse dynamics. Mechanical energy injected or dissipated at the ankle joint was computed by integrating the power across the duration of the stance phase. The net mechanical energy of the ankle was approximately zero for level walking and monotonically decreased (i.e., became increasingly negative) during downhill walking as the slope decreased. The indication is that the behavior of the ankle is energetically passive during downhill walking, playing a key role in dissipating energy from one step to the next. A passive mechanical model consisting of a pin joint coupled with a revolute spring and damper was fit to the ankle torque and its parameters were estimated for each downhill slope using linear regression. The passive model demonstrated good agreement with actual ankle dynamics as indicated by low root-mean-square error values. These results indicate the stance phase behavior of the human ankle during downhill walking may be effectively duplicated by a passive mechanism with appropriately selected spring and damping characteristics.  相似文献   

20.
Passive muscle stretching can be used in vivo to assess the viscoelastic properties of the entire musculo-articular complex, but does not allow the specific determination of the muscle or tendon viscoelasticity. In this respect, the local muscle hardness (LMH) of the gastrocnemius medialis (GM) belly was measured during a passive ankle stretching of 10 subjects using transient elastography. A Biodex isokinetic dynamometer was used to stretch ankle plantar flexors, to measure ankle angle, and the passive torque developed by the ankle joint in resistance to the stretch. Results show that the LMH increased during the stretching protocol, with an averaged ratio between maximal LMH and minimal LMH of 2.62+/-0.46. Furthermore, LMH-passive torque relationships were nicely fitted using a linear model with mean correlation coefficients (R(2)) of 0.828+/-0.099. A good reproducibility was found for the maximal passive torque (ICC=0.976, SEM=2.9Nm, CV=5.5%) and the y-intercept of the LMH-passive torque relationship (ICC=0.893, SEM=105Pa, CV=7.8%). However, the reproducibility was low for the slope of this relationship (ICC=0.631, SEM=10.35m(-2), CV=60.4%). The y-intercept of the LMH-passive torque relationship was not significantly changed after 10min of static stretching. This result confirms the finding of a previous study indicating that changes in passive torque following static stretching could be explained by an acute increase in muscle length without any changes in musculo-articular intrinsic mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号