首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alder J  Zheng JQ 《Neuron》2007,54(4):502-505
A key question in brain development is how migration of neuronal precursors is guided to establish the ordered laminar layers. In the April 20, 2007 issue of Cell, Guan et al. show that the leading process of migrating cerebellar granule neurons senses repulsive Slit molecules by generating a Ca(2+) wave that propagates to the soma to cause reversal of cell polarity and migration.  相似文献   

2.
In neurons, the position of the centrosome during final mitosis marks the point of emergence of the future axon. However, the molecular underpinnings linking centrosome position to axon emergence are unknown. GAP-43 is a calmodulin-binding IQ motif protein that regulates neuronal cytoskeletal architecture by interacting with F-actin in a phosphorylation dependent manner. Here we show that GAP-43 is associated with the centrosome and plays a critical role in mitosis and acquisition of neuronal polarity in cerebellar granule neurons. In the absence of GAP-43, the centrosome position is delinked from process outgrowth and is only capable of mediating morphological polarization, however molecular specification of the axonal compartment does not take place. These results show that GAP-43 is required to link centrosome position to process outgrowth in order to generate neuronal polarity in cerebellar granule cells.  相似文献   

3.
Coesmans M  Weber JT  De Zeeuw CI  Hansel C 《Neuron》2004,44(4):691-700
Cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses can undergo postsynaptically expressed long-term depression (LTD) or long-term potentiation (LTP) depending on whether or not the climbing fiber (CF) input is coactivated during tetanization. Here, we show that modifications of the postsynaptic calcium load using the calcium chelator BAPTA or photolytic calcium uncaging result in a reversal of the expected polarity of synaptic gain change. At higher concentrations, BAPTA blocks PF-LTP. These data indicate that PF-LTD requires a higher calcium threshold amplitude than PF-LTP induction and suggest that CF activity acts as a polarity switch by providing dendritic calcium transients. Moreover, previous CF-LTD induction changes the relative PF-LTD versus -LTP induction probability. These findings suggest that bidirectional cerebellar learning is governed by a calcium threshold rule operating "inverse" to the mechanism previously described at other glutamatergic synapses (BCM rule) and that the LTD/LTP induction probability is under heterosynaptic climbing fiber control.  相似文献   

4.
Microtubules in typical cells form radial arrays with their plus-ends pointing toward the cell periphery. In contrast, microtubules in dendrites of neurons are free from centrosomes and have a unique arrangement in which about half have a polarity with a minus-end distal orientation. Mechanisms for generation and maintenance of the microtubule arrangement in dendrites are not well understood. Here, we examined dendritic localization of a centrosomal protein, ninein, which has microtubule-anchoring and stabilizing functions. Immunohistochemical analysis of developing mouse cerebral and cerebellar cortices showed that ninein is localized at the centrosome in undifferentiated neural precursors. In contrast, ninein was barely detected in migrating neurons, such as those in the intermediate layer of the cerebral cortex and the internal granular layer of the cerebellar cortex. High expression was observed in thick dendrite-bearing neurons such as pyramidal neurons of the cerebral cortex and Purkinje neurons in the cerebellar cortex. Ninein was not detected at the centrosome of these cells, but was diffusely present in cell soma and dendrites. In cultured cortical neurons, ninein formed granular structures in soma and dendrites, being not associated with γ-tubulin. About 60% of these structures showed resistance to detergent and association with microtubules. Our observations suggest that the minus-ends of microtubules may be anchored and stabilized by centrosomal proteins localized in dendrites.  相似文献   

5.
Modifications of glycosaminoglycans at neuropile of rat and chicken cerebellum during development were histochemically studied. The application of Alcian Blue staining techniques and enzymatic degradations permitted to reveal in both species that in earlier stages of cerebellar development hyaluronic acid is present throughout neuropile of entire cerebellum but it accumulated preferentially at the medullary region and around precursory Purkinje cells where it showed a mucoid-like appearance. This substance was related with cell migration and aligning processes. At the middle of cerebellar development, around 2nd postnatal week in rat and 12-16 embryonary days in chick, a new polyanionic transient accumulation, presumably chondroitinsulphate, became present at the medullary region following the longitudinal axis of folium and limiting the forming granular layer, being this substance mainly related with polarity processes by controlling or guiding the growing cones of afferent fibers, which enter massively to cerebellar cortex. It disappeared as myelination progressed. Also from the middle stage of development onward, beside glycosaminoglycans, other polyanionic substances were present at the molecular and granular layer neuropile and at the cytoplasm of some nerve cells. These macromolecules were rather related with nerve cell differentiation and maturation.  相似文献   

6.
Axon formation in developing cerebellar granule neurons in situ is spatially and temporally segregated from subsequent neuronal migration and dendrite formation. To examine the role of local environmental cues on early steps in granule cell differentiation, the sequence of morphologic development and polarized distribution of membrane proteins was determined in granule cells isolated from contact with other cerebellar cell types. Granule cells cultured at low density developed their characteristic axonal and dendritic morphologies in a series of discrete temporal steps highly similar to those observed in situ, first extending a unipolar process, then long, thin bipolar axons, and finally becoming multipolar, forming short dendrites around the cell body. Axonal- and dendritic-specific cytoskeletal markers were segregated to the morphologically distinct domains. The cell surface distribution of a specific class of endogenous glycoproteins, those linked to the membrane by a glycosylphosphatidyl inositol (GPI) anchor, was also examined. The GPI-anchored protein, TAG-1, which is segregated to the parallel fiber axons in situ, was found exclusively on granule cell axons in vitro; however, two other endogenous GPI-anchored proteins were found on both the axonal and somatodendritic domains. These results demonstrate that granule cells develop polarity in a cell type-specific manner in the absence of the spatial cues of the developing cerebellar cortex. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 223–236, 1997.  相似文献   

7.
A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis   总被引:11,自引:0,他引:11  
  相似文献   

8.
A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears.  相似文献   

9.
Cellular polarity is crucial for brain development and morphogenesis. Lethal giant larvae 1 (Lgl1) plays a crucial role in the establishment of cell polarity from Drosophila to mammalian cells. Previous studies have found the importance of Lgl1 in the development of cerebellar, olfactory bulb, and cerebral cortex. However, the role of Lgl1 in hippocampal development during the embryonic stage and function in adult mice is still unknown. In our study, we created Lgl1‐deficient hippocampus mice by using Emx1‐Cre mice. Histological analysis showed that the Emx1‐Lgl1?/? mice exhibited reduced size of the hippocampus with severe malformations of hippocampal cytoarchitecture. These defects mainly originated from the disrupted hippocampal neuroepithelium, including increased cell proliferation, abnormal interkinetic nuclear migration, reduced differentiation, increased apoptosis, gradual disruption of adherens junctions, and abnormal neuronal migration. The radial glial scaffold was disorganized in the Lgl1‐deficient hippocampus. Thus, Lgl1 plays a distinct role in hippocampal neurogenesis. In addition, the Emx1‐Lgl1?/? mice displayed impaired behavioral performance in the Morris water maze and fear conditioning test.  相似文献   

10.
Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.  相似文献   

11.
Neuronal development requires proper migration, polarization and establishment of axons and dendrites. Growing evidence identifies the ubiquitin proteasome system (UPS) with its numerous components as an important regulator of various aspects of neuronal development. F-box proteins are interchangeable subunits of the Cullin-1 based E3 ubiquitin ligase, but only a few family members have been studied. Here, we report that the centrosomal E3 ligase FBXO31-SCF (Skp1/Cullin-1/F-box protein) regulates neuronal morphogenesis and axonal identity. In addition, we identified the polarity protein Par6c as a novel interaction partner and substrate targeted for proteasomal degradation in the control of axon but not dendrite growth. Finally, we ascribe a role for FBXO31 in dendrite growth and neuronal migration in the developing cerebellar cortex. Taken together, we uncovered the centrosomal E3 ligase FBXO31-SCF as a novel regulator of neuronal development.  相似文献   

12.
The correlations between clinical signs and BAEP latency, amplitude and dispersion variables were investigated in 98 multiple sclerosis patients. A new dispersion variable, the wave IV–V “shape ratio” (SR IV–V), correlated most strongly with brain-stem signs (i.e., nystagmus). Severely reduced wave IV–V amplitude was frequently found in patients with vertical nystagmus or internuclear ophthalmoplegia, and interpeak latency (IPL) III–V correlated most strongly with cerebellar dysfunction (i.e., ataxia). The results may reflect different localizing ability among the various BAEP variables.The association between ataxia and increased IPL III–V was significantly stronger for BAEP to C clicks than to R clicks. Patients with abnormal BAEPs to one polarity (C or R) but not to the other, had significantly more clinical dysfunction than patients with normal BAEPs to both C and R clicks. Hence, C vs. R discordance may be interpreted to indicate possible brain-stem dysfunction.  相似文献   

13.
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N- CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti- Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.  相似文献   

15.
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24 h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs.  相似文献   

16.
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.  相似文献   

17.
Mutations of the ankyrin-repeat protein Inversin, a member of a diverse family of more than 12 proteins, cause nephronophthisis (NPH), an autosomal recessive cystic kidney disease associated with extra-renal manifestations such as retinitis pigmentosa, cerebellar aplasia and situs inversus. Most NPH gene products (NPHPs) localize to the cilium, and appear to control the transport of cargo protein to the cilium by forming functional networks. Inversin interacts with NPHP1 and NPHP3, and shares with NPHP4 the ability to antagonize Dishevelled-stimulated canonical Wnt signaling, potentially through recruitment of the Anaphase Promoting Complex (APC/C). However, Dishevelled antagonism may be confined towards the basal body, thereby polarizing motile cilia on the cells of the ventral node and respiratory tract. Inversin is essential for recruiting Dishevelled to the plasma membrane in response to activated Frizzled, a crucial step in planar cell polarity signaling. During vertebrate pronephros development, the Inversin-mediated translocation of Dishevelled appears to orchestrate the migration of cells and differentiation of segments that correspond to the mammalian loop of Henle. Thus, defective tubule migration and elongation may contribute to concentration defects and cause cyst formation in patients with NPH.  相似文献   

18.
The axon initial segment (AIS) is a specialized domain essential for neuronal function, the formation of which begins with localization of an ankyrin-G (AnkG) scaffold. However, the mechanism directing and maintaining AnkG localization is largely unknown. In this study, we demonstrate that in vivo knockdown of microtubule cross-linking factor 1 (MTCL1) in cerebellar Purkinje cells causes loss of axonal polarity coupled with AnkG mislocalization. MTCL1 lacking MT-stabilizing activity failed to restore these defects, and stable MT bundles spanning the AIS were disorganized in knockdown cells. Interestingly, during early postnatal development, colocalization of MTCL1 with these stable MT bundles was observed prominently in the axon hillock and proximal axon. These results indicate that MTCL1-mediated formation of stable MT bundles is crucial for maintenance of AnkG localization. We also demonstrate that Mtcl1 gene disruption results in abnormal motor coordination with Purkinje cell degeneration, and provide evidence suggesting possible involvement of MTCL1 dysfunction in the pathogenesis of spinocerebellar ataxia.  相似文献   

19.
Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.  相似文献   

20.
Several epitheliums exhibit a clear polarity that lies within the plane of the epithelium. This polarity, referred to as planar polarity or tissue polarity, is oriented perpendicular to the apical-basal polarity of the epithelium. Over the last two decades, the genetic and molecular bases of planar polarity have been intensively investigated in Drosophila. Recent studies have shown that establishment of planar polarity relies on the unipolar distribution of a small number of signaling molecules localizing at the apical cortex. Unipolar localization of planar polarity proteins defines two opposite and complementary cortical domains. These domains show a stereotyped orientation at the tissue level. Positioning of these cortical domains is coordinated at the tissue level by a second class of signaling molecules that form an activity gradient across the epithelium. Together these data have led to a general model of planar polarity establishment. Considering that planar polarity genes have been conserved from flies to vertebrates, this model may be useful for our understanding of epithelium biology in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号