首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrous aggregates of Tau protein are characteristic features of Alzheimer disease. We applied high resolution atomic force and EM microscopy to study fibrils assembled from different human Tau isoforms and domains. All fibrils reveal structural polymorphism; the “thin twisted” and “thin smooth” fibrils resemble flat ribbons (cross-section ∼10 × 15 nm) with diverse twist periodicities. “Thick fibrils” show periodicities of ∼65–70 nm and thicknesses of ∼9–18 nm such as routinely reported for “paired helical filaments” but structurally resemble heavily twisted ribbons. Therefore, thin and thick fibrils assembled from different human Tau isoforms challenge current structural models of paired helical filaments. Furthermore, all Tau fibrils reveal axial subperiodicities of ∼17–19 nm and, upon exposure to mechanical stress or hydrophobic surfaces, disassemble into uniform fragments that remain connected by thin thread-like structures (∼2 nm). This hydrophobically induced disassembly is inhibited at enhanced electrolyte concentrations, indicating that the fragments resemble structural building blocks and the fibril integrity depends largely on hydrophobic and electrostatic interactions. Because full-length Tau and repeat domain constructs assemble into fibrils of similar thickness, the “fuzzy coat” of Tau protein termini surrounding the fibril axis is nearly invisible for atomic force microscopy and EM, presumably because of its high flexibility.  相似文献   

2.
In addition to their capacity for template-directed 5′ → 3′ DNA synthesis at the polymerase (pol) site, DNA polymerases have a separate 3′ → 5′ exonuclease (exo) editing activity that is involved in assuring the fidelity of DNA replication. Upon misincorporation of an incorrect nucleotide residue, the 3′ terminus of the primer strand at the primer-template (P/T) junction is preferentially transferred to the exo site, where the faulty residue is excised, allowing the shortened primer to rebind to the template strand at the pol site and incorporate the correct dNTP. Here we describe the conformational changes that occur in the primer strand as it shuttles between the pol and exo sites of replication-competent Klenow and Klentaq DNA polymerase complexes in solution and use these conformational changes to measure the equilibrium distribution of the primer between these sites for P/T DNA constructs carrying both matched and mismatched primer termini. To this end, we have measured the fluorescence and circular dichroism spectra at wavelengths of >300 nm for conformational probes comprising pairs of 2-aminopurine bases site-specifically replacing adenine bases at various positions in the primer strand of P/T DNA constructs bound to DNA polymerases. Control experiments that compare primer conformations with available x-ray structures confirm the validity of this approach. These distributions and the conformational changes in the P/T DNA that occur during template-directed DNA synthesis in solution illuminate some of the mechanisms used by DNA polymerases to assure the fidelity of DNA synthesis.Escherichia coli DNA polymerase (DNAP)2 I is a single subunit polymerase that is organized into three functional domains: an N-terminal domain that is associated with 5′ → 3′ exonuclease activity, an intermediate domain that carries the 3′ → 5′ proofreading activity, and a C-terminal domain that is associated with the 5′ → 3′ template-directed polymerization activity. An important role of DNAP I is to remove the RNA primers of the Okazaki fragments formed during lagging strand DNA synthesis in E. coli replication and to fill in the resulting gaps by template-directed DNA synthesis (1). An N-terminal deletion mutant of DNAP I, known as the “large fragment” or Klenow form of the enzyme, contains only the polymerase (pol) and the 3′ → 5′ exonuclease (exo) domains. The Klenow polymerase has served and continues to serve as an excellent model system for isolating and defining general structure-function relationships in polymerases and in the supporting machinery of DNA replication.The main function of the 3′ → 5′ exonuclease activity of DNAP I is to remove misincorporated nucleotide residues from the 3′-end of the primer (2), thus contributing significantly to the overall fidelity of DNA replication (3). Contrary to initial expectations, crystallographic studies showed that the pol and exo active sites are quite far apart in replication polymerases, about 30 Å in Klenow (4). As a consequence, the ability of polymerases to “shuttle” the 3′-end of the primer strand efficiently between the pol and the exo sites in order to rectify misincorporation events during polymerization is critical to maintaining the overall accuracy of template-directed replication. Elucidation of the mechanisms of this shuttling and determination of the factors that control the rates (and equilibria) of the active site switching reaction will certainly increase our understanding of fidelity control by DNA polymerases.An early crystallographic study of the Klenow polymerase complexed with fully paired primer-template (P/T) DNA revealed that 3–4 nt of the 3′-primer terminus had been unwound from the template stand and partitioned into the exo site and that an extended single-stranded DNA (ssDNA) binding pocket of the exo site appeared to make position-specific hydrophobic contacts with the unstacked bases at the 3′-end of the primer (4). A separate crystallographic study of an editing complex confirmed that an ssDNA fragment 4 nt in length was bound at the exo site in the same conformation as seen for the single-stranded 3′-primer sequence unwound from P/T DNA (5). A structure of Klenow polymerase with the DNA bound at the pol site has not yet been reported, although such structures have been obtained for other homologous polymerases, including Klentaq (the “large fragment” of Thermus aquaticus (Taq) DNAP), Bacillus stearothermophilus (Bst) “large fragment” polymerase, and the T7 DNAP (68), all of which are members of the polymerase family that includes Klenow.The amino acid residues involved in the binding of DNA at the pol site in these polymerases (determined from co-crystal structures) and those of Klenow (determined by site-directed mutagenesis studies (9, 10)) are highly conserved, suggesting that a similar DNA binding mode at the pol site may apply to all of the DNAP I polymerases. The crystal structure of Klenow revealed that the polymerization domain has a shape reminiscent of a right hand in which the palm, fingers, and thumb domains form the DNA-binding crevice. Structural studies with various DNAP I polymerases in the presence of P/T DNA constructs yielded an “open” binary complex, whereas the addition of the next correct dNTP (as a chain-terminating dideoxy-NTP) resulted in the formation of a catalytically competent “closed” ternary complex (68). In the latter complex, the 3′-primer terminus was base-paired with the template DNA, and the templating base was poised for incorporation of the next correct nucleotide. These structures showed that the conformation of the DNA primer terminus bound at the pol site is markedly different from that of the “frayed open” primer observed at the exo site in Klenow (4, 5).Although crystallographic studies have provided a wealth of information about the conformations of the DNA substrates bound at the active sites of DNAP, replication itself is a dynamic process (reviewed in Ref. 11), and it is critical to be able to distinguish between various forms of DNA-polymerase complexes in solution in order to fully understand the mechanistic details of the replication process. A solution approach used by Millar and co-workers (reviewed in Ref. 12) for studying the conformation of DNA in these complexes involved measuring the time-resolved fluorescence anisotropy properties of a dansyl fluorophore attached to a DNA base located 8 bp upstream of the P/T DNA junction. The changes in the lifetime of the fluorophore, which appeared to depend mostly on the local environment occupied by the probe within the protein (i.e. buried versus partially exposed), were correlated with specific binding conformations of the primer to provide an estimate of the fractional occupancy of the pol and the exo sites. Reha-Krantz and co-workers (13) more recently used a related approach, here involving the monitoring of changes in the fluorescent lifetimes of a single 2-aminopurine (2-AP) base (a fluorescent analogue of adenine) site-specifically substituted in the template strand at the P/T junction, to make similar fractional occupancy measurements. However, we note that structural interpretations of these fluorescence experiments relied heavily on the available crystal structures, and it remained to be shown directly that the 3′-end of the primer in P/T DNA constructs assumes the same distribution of conformations when bound to the protein in solution.To get around this problem, as well as to directly investigate the conformations of the primer DNA in both active sites of the Klenow and Klentaq polymerases, we have used a novel CD spectroscopic approach to characterize the solution conformations of primer DNA bound to Klenow and Klentaq DNAPs. Previously, we had shown that CD spectroscopy, in conjunction with fluorescence measurements, can be used to examine changes in local DNA and RNA conformations at 2-AP dimer probes inserted at specified positions within the nucleic acid frameworks of a variety of macromolecular machines functioning in solution (1416). 2-AP is a structural isomer of adenine that forms base pairs with thymine in DNA (and uridine in RNA), and the substitution of 2-AP for adenine in such bp does not significantly perturb the structure or stability of the resultant double helix. Furthermore, when these probes are used as dimer pairs, the CD spectrum primarily reflects the interaction of the transition dipoles of the two probes themselves and thus the local conformation of the DNA at those positions within the P/T DNA. The characteristic CD and fluorescence signals for 2-AP probes in nucleic acids occur at wavelengths of >300 nm, a spectral region in which the protein and the canonical nucleic acid components of the “macromolecular machines of gene expression” are otherwise transparent. In this study, we have examined the binding of Klenow and Klentaq polymerases to P/T DNA constructs that were designed to be comparable with the nucleic acid components of functioning replication complexes. By examining the low energy CD spectra of site-specifically placed 2-AP probes, we have been able to characterize base conformations at defined positions within the DNA to reveal conformational features of specific DNA bases bound at and near both the pol and the exo active sites of these polymerases. These measurements, in that they directly reflect the actual conformations of the DNA chains bound within the active sites of the functioning polymerase, have also provided a direct means to estimate the equilibrium distributions of primer ends between the two active sites for various P/T DNA constructs.  相似文献   

3.
The human DNA polymerase κ homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces “−1” frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N2-etheno-2′-deoxyguanosine, with a larger stacking surface than canonical purines, showed the highest frequency of formation of −1 frameshift deletions. Dpo4 T239W, a mutant we had previously shown to produce fluorescence changes attributed to conformational change following dNTP binding opposite cognate bases (Beckman, J. W., Wang, Q., and Guengerich, F. P. (2008) J. Biol. Chem. 283, 36711–36723), reported similar conformational changes when the incoming dNTP complemented the base following a templating purine base or bulky adduct (i.e. the “+1” base). However, in all mispairing cases, phosphodiester bond formation was inefficient. The frequency of −1 frameshift events and the associated conformational changes were not dependent on the context of the remainder of the sequence. Collectively, our results support a mechanism for −1 frameshift deletions by Dpo4 that involves formation of active complexes via a favorable conformational change that skips the templating base, without causing slippage or flipping out of the base, to incorporate a complementary residue opposite the +1 base, in a mechanism previously termed “dNTP-stabilized incorporation.” The driving force is attributed to be the stacking potential between the templating base and the incoming dNTP base.  相似文献   

4.
Coiled-coils are widespread protein–protein interaction motifs typified by the heptad repeat (abcdefg)n in which “a” and “d” positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583–611), “Q1-short,” of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 Å resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585–621, “Q1-long.” Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include “a” and “d” positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.  相似文献   

5.
Quercetin-3-rutinoside inhibits thrombus formation in a mouse model by inhibiting extracellular protein disulfide isomerase (PDI), an enzyme required for platelet thrombus formation and fibrin generation. Prior studies have identified PDI as a potential target for novel antithrombotic agents. Using a fluorescence enhancement-based assay and isothermal calorimetry, we show that quercetin-3-rutinoside directly binds to the b′ domain of PDI with a 1:1 stoichiometry. The binding of quercetin-3-rutinoside to PDI induces a more compact conformation and restricts the conformational flexibility of PDI, as revealed by small angle x-ray scattering. The binding sites of quercetin-3-rutinoside to PDI were determined by studying its interaction with isolated fragments of PDI. Quercetin-3-rutinoside binds to the b′x domain of PDI. The infusion of the b′x fragment of PDI rescued thrombus formation that was inhibited by quercetin-3-rutinoside in a mouse thrombosis model. This b′x fragment does not possess reductase activity and, in the absence of quercetin-3-rutinoside, does not affect thrombus formation in vivo. The isolated b′ domain of PDI has potential as an antidote to reverse the antithrombotic effect of quercetin-3-rutinoside by binding and neutralizing quercetin-3-rutinoside.  相似文献   

6.
7.
Protein translocation across the endoplasmic reticulum membrane occurs at the Sec61 translocon. This has two essential subunits, the channel-forming multispanning membrane protein Sec61p/Sec61α and the tail-anchored Sss1p/Sec61γ, which has been proposed to “clamp” the channel. We have analyzed the function of Sss1p using a series of domain mutants and found that both the cytosolic and transmembrane clamp domains of Sss1p are essential for protein translocation. Our data reveal that the cytosolic domain is required for Sec61p interaction but that the transmembrane clamp domain is required to complete activation of the translocon after precursor targeting to Sec61p.  相似文献   

8.
The intrinsic fluorescence of smooth muscle myosin signals conformational changes associated with different catalytic states of the ATPase cycle. To elucidate this relationship, we have examined the pre-steady-state kinetics of nucleotide binding, hydrolysis, and product release in motor domain-essential light chain mutants containing a single endogenous tryptophan, either residue 512 in the rigid relay loop or residue 29 adjacent to the SH3 domain. The intrinsic fluorescence of W512 is sensitive to both nucleotide binding and hydrolysis, and appears to report structural changes at the active site, presumably through a direct connection with switch II. The intrinsic fluorescence of W29 is sensitive to nucleotide binding but not hydrolysis, and does not appear to be tightly linked with structural changes occurring at the active site. We propose that the SH3 domain may be sensitive to conformational changes in the lever arm through contacts with the essential light chain.  相似文献   

9.
Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a “conformational switch” that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that “fine-tune” their sensitivities to activation by SH3-based ligands.  相似文献   

10.
Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b′ domain, preventing PDI from binding to unfolded proteins. The b′ domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b′ domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation.  相似文献   

11.
Protealysin (PLN) belongs to the M4 family of peptidases that are commonly known as thermolysin-like proteases (TLPs). All TLPs are synthesized as precursors containing N-terminal propeptides. According to the primary structure of the N-terminal propeptides, the family is divided into two distinct groups. Representatives of the first group including thermolysin and all TLPs with known three-dimensional structures have long prosequences (∼200 amino acids). Enzymes of the second group, whose prototype is protealysin, have short (∼50 amino acids) propeptides. Here, we present the 1.8 Å crystal structure of PLN precursor (proPLN), which is the first three-dimensional structure of a TLP precursor. Whereas the structure of the catalytic domain of proPLN is similar overall to previously reported structures of mature TLPs, it has specific features, including the absence of calcium-binding sites, and different structures of the N-terminal region and substrate-binding site. PLN propeptide forms a separate domain in the precursor and likely acts as an inhibitor that blocks the substrate-binding site and fixes the “open” conformation of the active site, which is unfavorable for catalysis. Furthermore the conserved PPL motif identified in our previous studies directly interacts with the S′ subsites of the active center being a critical element of the propeptide-catalytic domain interface. Comparison of the primary structures of TLPs with short propeptides suggests that the specific features revealed in the proPLN crystal structure are typical for all protealysin-like enzymes. Thus, such proteins can be considered as a separate subfamily of TLPs.  相似文献   

12.
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b'', and a'', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b'' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a'' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.  相似文献   

13.
Disulfide bond formation in the endoplasmic reticulum of eukaryotes is catalyzed by the ubiquitously expressed enzyme protein disulfide isomerase (PDI). The effectiveness of PDI as a catalyst of native disulfide bond formation in folding polypeptides depends on the ability to catalyze disulfide-dithiol exchange, to bind non-native proteins, and to trigger conformational changes in the bound substrate, allowing access to buried cysteine residues. It is known that the b' domain of PDI provides the principal peptide binding site of PDI and that this domain is critical for catalysis of isomerization but not oxidation reactions in protein substrates. Here we use homology modeling to define more precisely the boundaries of the b' domain and show the existence of an intradomain linker between the b' and a' domains. We have expressed the recombinant b' domain thus defined; the stability and conformational properties of the recombinant product confirm the validity of the domain boundaries. We have modeled the tertiary structure of the b' domain and identified the primary substrate binding site within it. Mutations within this site, expressed both in the isolated domain and in full-length PDI, greatly reduce the binding affinity for small peptide substrates, with the greatest effect being I272W, a mutation that appears to have no structural effect.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic growth factor that promotes compensatory angiogenesis in circumstances of oxygen shortage. The requirement for translational regulation of VEGF is imposed by the cumbersome structure of the 5′ untranslated region (5′UTR), which is incompatible with efficient translation by ribosomal scanning, and by the physiologic requirement for maximal VEGF production under conditions of hypoxia, where overall protein synthesis is compromised. Using bicistronic reporter gene constructs, we show that the 1,014-bp 5′UTR of VEGF contains a functional internal ribosome entry site (IRES). Efficient cap-independent translation is maintained under hypoxia, thereby securing efficient production of VEGF even under unfavorable stress conditions. To identify sequences within the 5′UTR required for maximal IRES activity, deletion mutants were analyzed. Elimination of the majority (851 nucleotides) of internal 5′UTR sequences not only maintained full IRES activity but also generated a significantly more potent IRES. Activity of the 163-bp long “improved” IRES element was abrogated, however, following substitution of a few bases near the 5′ terminus as well as substitutions close to the translation start codon. Both the full-length 5′UTR and its truncated version function as translational enhancers in the context of a monocistronic mRNA.  相似文献   

15.
Enzymatic catalysis of biochemical reactions is essential to all living systems. The “lock and key” and “induced fit” models were early contributions to our understanding of the mechanisms involved in the reaction between an enzyme and its substrate. However, whether a given substrate-induced conformation is rigid or remains flexible has not yet been determined. By measuring the enzyme activity and intrinsic fluorescence of a nonspecific Eisenia fetida protease-I with different chromogenic substrates, we show that in subsequent reactions of protease with substrates, both the “lock and key” and “induced fit” mechanisms are used depending on the degree of conformational change required. Chromozym-Th- or chromosym-Ch-induced protease conformations were unable to bind chromozym-U. The chromosym-U-induced protease conformation remained flexible and could be further induced by chromozym-Th and chromozym-Ch. When low concentrations of guanidine HCl were used to disturb the conformation of the enzyme, only small changes in intrinsic fluorescence of the chromozym-Th-induced protease were detected, in contrast to the native enzyme whose intrinsic fluorescence markedly increased. This indicates that the substrate-induced enzyme was relatively rigid compared with the native protease. Utilizing a lock and key mechanism for secondary substrate reactions may have adaptive value in that it facilitates high efficiency in enzymatic reactions.  相似文献   

16.
Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.  相似文献   

17.
Mycobacterial AdnAB exemplifies a family of heterodimeric motor-nucleases involved in processing DNA double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal RecB-like nuclease module. Here we conducted a biochemical characterization of the AdnAB motor, using a nuclease-inactivated heterodimer. AdnAB is a vigorous single strand DNA (ssDNA)-dependent ATPase (kcat 415 s−1), and the affinity of the motor for the ssDNA cofactor increases 140-fold as DNA length is extended from 12 to 44 nucleotides. Using a streptavidin displacement assay, we demonstrate that AdnAB is a 3′ → 5′ translocase on ssDNA. AdnAB binds stably to DSB ends. In the presence of ATP, the motor unwinds the DNA duplex without requiring an ssDNA loading strand. We integrate these findings into a model of DSB unwinding in which the “leading” AdnB and “lagging” AdnA motor domains track in tandem, 3′ to 5′, along the same DNA single strand. This contrasts with RecBCD, in which the RecB and RecD motors track in parallel along the two separated DNA single strands. The effects of 5′ and 3′ terminal obstacles on ssDNA cleavage by wild-type AdnAB suggest that the AdnA nuclease receives and processes the displaced 5′ strand, while the AdnB nuclease cleaves the displaced 3′ strand. We present evidence that the distinctive “molecular ruler” function of the ATP-dependent single strand DNase, whereby AdnAB measures the distance from the 5′-end to the sites of incision, reflects directional pumping of the ssDNA through the AdnAB motor into the AdnB nuclease. These and other findings suggest a scenario for the descent of the RecBCD- and AddAB-type DSB-processing machines from an ancestral AdnAB-like enzyme.  相似文献   

18.
Mycobacterial AdnAB is a heterodimeric DNA helicase-nuclease and 3′ to 5′ DNA translocase implicated in the repair of double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Inclusion of mycobacterial single strand DNA-binding protein (SSB) in reactions containing linear plasmid dsDNA allowed us to study the AdnAB helicase under conditions in which the unwound single strands are coated by SSB and thereby prevented from reannealing or promoting ongoing ATP hydrolysis. We found that the AdnAB motor catalyzed processive unwinding of 2.7–11.2-kbp linear duplex DNAs at a rate of ∼250 bp s−1, while hydrolyzing ∼5 ATPs per bp unwound. Crippling the AdnA phosphohydrolase active site did not affect the rate of unwinding but lowered energy consumption slightly, to ∼4.2 ATPs bp−1. Mutation of the AdnB phosphohydrolase abolished duplex unwinding, consistent with a model in which the “leading” AdnB motor propagates a Y-fork by translocation along the 3′ DNA strand, ahead of the “lagging” AdnA motor domain. By tracking the resection of the 5′ and 3′ strands at the DSB ends, we illuminated a division of labor among the AdnA and AdnB nuclease modules during dsDNA unwinding, whereby the AdnA nuclease processes the unwound 5′ strand to liberate a short oligonucleotide product, and the AdnB nuclease incises the 3′ strand on which the motor translocates. These results extend our understanding of presynaptic DSB processing by AdnAB and engender instructive comparisons with the RecBCD and AddAB clades of bacterial helicase-nuclease machines.  相似文献   

19.
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix structure in the C-terminal domain of the β subunit containing the conserved DELSEED motif, termed “DELSEED-loop,” was suggested to be involved in coupling between catalysis and rotation. If this is indeed the role of the loop, it must have a critical length, the minimum length required to sustain its function. Here, the critical length of the DELSEED-loop was determined by functional analysis of mutants of Bacillus PS3 ATP synthase that had 7–14 amino acids within the loop deleted. A 10 residue deletion lost the ability to catalyze ATP synthesis, but was still an active ATPase. Deletion of 14 residues abolished any enzymatic activity. Modeling indicated that in both deletion mutants the DELSEED-loop was shortened by ∼10 Å; fluorescence resonance energy transfer experiments confirmed the modeling results. This appears to define the minimum length for DELSEED-loop required for coupling of catalysis and rotation. In addition, we could demonstrate that the loss of high-affinity binding to the catalytic site(s) that had been observed previously in two deletion mutants with 3–4 residues removed was not due to the loss of negative charged residues of the DELSEED motif in these mutants. An AALSAAA mutant in which all negative charges of the DELSEED motif were removed showed a normal pattern for MgATP binding to the catalytic sites, with a clearly present high-affinity site.  相似文献   

20.
Efficient silencing of gene expression by an ASON-bulge-DNAzyme complex   总被引:1,自引:0,他引:1  
Yi J  Liu C 《PloS one》2011,6(4):e18629

Background

DNAzymes are DNA molecules that can directly cleave cognate mRNA, and have been developed to silence gene expression for research and clinical purposes. The advantage of DNAzymes over ribozymes is that they are inexpensive to produce and exhibit good stability. The “10-23 DNA enzyme” is composed of a catalytic domain of 15 deoxynucleotides, flanked by two substrate-recognition domains of approximately eight nucleotides in each direction, which provides the complementary sequence required for specific binding to RNA substrates. However, these eight nucleotides might not afford sufficient binding energy to hold the RNA substrate along with the DNAzyme, which would interfere with the efficiency of the DNAzyme or cause side effects, such as the cleavage of non-cognate mRNAs.

Methodology

In this study, we inserted a nonpairing bulge at the 5′ end of the “10–23 DNA enzyme” to enhance its efficiency and specificity. Different sizes of bulges were inserted at different positions in the 5′ end of the DNAzyme. The non-matching bulge will avoid strong binding between the DNAzyme and target mRNA, which may interfere with the efficiency of the DNAzyme.

Conclusions

Our novel DNAzyme constructs could efficiently silence the expression of target genes, proving a powerful tool for gene silencing. The results showed that the six oligo bulge was the most effective when the six oligo bulge was 12–15 bp away from the core catalytic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号