首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein ubiquitination, which is highly selective, regulates many important biological processes including cellular differentiation and pathogenesis in eukaryotic cells. Here, we integrated pharmacological, molecular and proteomic approaches to explore the role of ubiquitination in Magnaporthe oryzae, the leading fungal disease of rice world-wide. Inhibition of ubiquitin-mediated proteolysis using the 26S proteasome inhibitor, Bortezomib, significantly attenuated conidia germination, appressorium formation and pathogenicity in M. oryzae. Gene expression analysis revealed that many genes associated with protein ubiquitination were developmentally regulated during conidia germination. Only a few, including a polyubiquitin encoding gene, MGG_01282, were more abundantly expressed during appressorium formation and under nitrogen starvation. Targeted gene deletion of MGG_01282, in addition to a significant reduction in protein ubiquitination as determined by immuno blot assays, resulted in pleiotropic effects on M. oryzae including reduced growth and sporulation, abnormal conidia morphology, reduced germination and appressorium formation, and the inability to cause disease. Mutants were also defective in sexual development and were female sterile. Using mass spectrometry, we identified 63 candidate polyubiquitinated proteins under nitrogen starvation, which included overrepresentation of proteins involved in translation, transport and protein modification. Our study suggests that ubiquitination of target proteins plays an important role in nutrient assimilation, development and pathogenicity of M. oryzae.  相似文献   

2.
Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungus Magnaporthe oryzae (Mo), was expressed in Pichia pastoris. Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.  相似文献   

3.
4.
5.
6.
7.
M Xue  J Yang  Z Li  S Hu  N Yao  RA Dean  W Zhao  M Shen  H Zhang  C Li  L Liu  L Cao  X Xu  Y Xing  T Hsiang  Z Zhang  JR Xu  YL Peng 《PLoS genetics》2012,8(8):e1002869
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.  相似文献   

8.
To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by formation of a heteromeric septin ring complex, which was visualized by spatial localization of Septin4:green fluorescent protein (GFP) and Septin5:GFP fusion proteins. Mitosis in the fungal germ tube is followed by long-distance nuclear migration and rapid formation of an actomyosin contractile ring in the neck of the developing appressorium, at a position previously marked by the septin complex. By contrast, mutants impaired in appressorium development, such as Δpmk1 and ΔcpkA regulatory mutants, undergo coupled mitosis and cytokinesis within the germ tube. Perturbation of the spatial control of septation, by conditional mutation of the SEPTATION-ASSOCIATED1 gene of M. oryzae, prevented the fungus from causing rice blast disease. Overexpression of SEP1 did not affect septation during appressorium formation, but instead led to decoupling of nuclear division and cytokinesis in nongerminated conidial cells. When considered together, these results indicate that SEP1 is essential for determining the position and frequency of cell division sites in M. oryzae and demonstrate that differentiation of appressoria requires a cytokinetic event that is distinct from cell divisions within hyphae.  相似文献   

9.
10.
Lau G  Hamer JE 《The Plant cell》1996,8(5):771-781
MPG1, a pathogenicity gene of the rice blast fungus Magnaporthe grisea, is expressed during pathogenesis and in axenic culture during nitrogen or glucose limitation. We initiated a search for regulatory mutations that would impair nitrogen metabolism, MPG1 gene expression, and pathogenicity. First, we developed a pair of laboratory strains that were highly fertile and pathogenic toward barley. Using a combinatorial genetic screen, we identified mutants that failed to utilize a wide range of nitrogen sources (e.g., nitrate or amino acids) and then tested the effect of these mutations on pathogenicity. We identified five mutants and designated them Nr- (for nitrogen regulation defective). We show that two of these mutations define two genes, designated NPR1 and NPR2 (for nitrogen pathogenicity regulation), that are essential for pathogenicity and the utilization of many nitrogen sources. These genes are nonallelic to the major nitrogen regulatory gene in M. grisea and are required for expression of the pathogenicity gene MPG1. We propose that NPR1 and NPR2 are major regulators of pathogenicity in M. grisea and may be novel regulators of nitrogen metabolism in fungi.  相似文献   

11.
12.
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.  相似文献   

13.
含WD重复功能域的蛋白能够参与信号传导、转录调控、RNA剪切、细胞的凋亡等多种功能,在病原菌与寄主植物蛋白互作的过程中扮演着重要的角色。本研究分析了稻瘟病菌基因组中94个WD功能域基因编码区和调控区中SSR的组成、分布,并检测了7个蛋白编码区中SSR的变异及其对蛋白二级结构的影响。结果表明,WD功能域基因的编码区和调控区中都含有大量的SSR,但是SSR在这些基因的外显子区、内含子区、5’一UTR和3’一UTR区中SSR的组成和分布均不相同;编码区中三碱基和六碱基SSR分布较多,这些SSR基序大都表现为GC含量较高和其所编码的亲水性氨基酸出现的频率远远高于疏水性氨基酸的特点。且检测的7个WD功能域基因的编码区中的SSR位点均具有丰富的多态性,通过Antheprot(DPM)软件预测发现:SSR的变异对蛋白的二级结构有一定影响。这暗示着SSR的变异对致病相关基因的变异起着十分重要的作用。  相似文献   

14.
15.
We have analyzed the karyotype of the rice blast fungus, Magnaporthe grisea, by using pulsed-filed gel electrophoresis. We tested whether the electrophoretic karyotype of an isolate was related to its pathotype, as determined by infection assays, or its genetic lineage, as determined by DNA fingerprinting. Highly reproducible electrophoretic karyotypes were obtained for a collection of U.S. and Chinese isolates representing a diverse collection of pathotypes and genetic lineages. Chromosomes ranged in size from 3 to 10 Mb. Although chromosome number was largely invariant, chromosome length polymorphisms were frequent. Minichromosomes were also found, although their presence was not ubiquitous. They ranged in number from 1 to 3 and in size from 470 kb to 2.2 Mb. Karyotypes were sufficiently variable as to obscure the obvious relatedness of isolates on the basis of pathogenicity assays or genetic lineage analysis by DNA fingerprinting. We documented that the electrophoretic karyotype of an isolate can change after prolonged serial transfer in culture and that this change did not alter the isolate's pathotype. The mechanisms bringing about karyotype variability involve deletions, translocations, and more complex rearrangements. We conclude that karyotypic variability in the rice blast fungus is a reflection of the lack of sexuality in wild populations which leads to the maintenance of neutral genomic rearrangements in clones of the fungus.  相似文献   

16.
Lipoxygenase (LOX) and lipid hydroperoxide-decomposing activity (LHDA) markedly increased in the fifth leaves of rice (Oryza sativa cv Aichiasahi) after infection with the rice blast fungus, Magnaporthe grisea. The increases in the enzyme activities were significantly higher in response to infection with an incompatible strain (race 131) compared with infection with a compatible strain (race 007) of the fungus. Using ion-exchange chromatography, we isolated three LOX activities (leaf LOX-1, -2, -3) from both uninoculated and infected leaves. The activity of leaf LOX-3, in particular, increased in the incompatible race-infected leaves. The leaf LOX-3 had a pH optimum of 5.0 and produced preferentially 13-l-hydroperoxy-9,11 (Z,E)-octadecadienoic acid (13-HPODD) from linoleic acid. 13-HPODD and 13-l-hydroxy-9,11 (Z,E)-octadecadienoic acid, one of the reaction products from 13-HPODD by LHDA, were highly inhibitory to the germination of conidia of the fungus. The present study provides correlative evidence for important roles of LOX and LHDA in the resistance response of rice against the blast fungus.  相似文献   

17.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

18.
M. L. Farman  S. A. Leong 《Genetics》1995,140(2):479-492
Telomeric restriction fragments were genetically mapped to a previously described linkage map of Magnaporthe grisea, using RFLPs identified by a synthetic probe, (TTAGGG)(3). Frequent rearrangement of telomeric sequences was observed in progeny isolates creating a potential for misinterpretation of data. Therefore a consensus segregation data set was used to minimize mapping errors. Twelve of the 14 telomeres were found to be genetically linked to existing RFLP markers. Second-dimensional electrophoresis of restricted chromosomes confirmed these linkage assignments and revealed the chromosomal location of the two unlinked telomeres. We were thus able to assign all 14 M. grisea telomeres to their respective chromosome ends. The Achilles' cleavage (AC) technique was employed to determine that chromosome 1 markers 11 and CH5-120H were ~1.8 Mb and 1.28 Mb, respectively, from their nearest telomeres. RecA-AC was also used to determine that unlinked telomere 6 was ~530 kb from marker CH5-176H in strain 2539 and 580 kb in Guy11. These experiments indicated that large portions of some chromosome ends are unrepresented by genetic markers and provided estimates of the relationship of genetic to physical distance in these regions of the genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号