首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li Q  Du HN  Hu HY 《Biopolymers》2003,72(2):116-122
The protein-protein interaction system often contains many fluorophores that may significantly interfere with the quantitative determination of the binding abilities. To solve this perplexing problem, we biosynthetically incorporated the two tryptophan analogs, 5-hydroxytryptophan and 7-azatryptophan, into the immunoglobulin G (IgG) binding domain of streptococcal protein G (PGBD). The exclusive excitation and novel fluorescence changes in both the intensity and anisotropy are beneficial to reporting the details of the interactions between PGBD and the IgG fragments and enable assessment of the binding abilities. The dissociation constants are estimated to be 0.28 microM for the binding of human Fc and 8.0 microM for mouse Fc. The results clearly demonstrate that labeling of tryptophan analogs has very little effect on the binding abilities and is broadly applicable to quantitatively studying protein-protein interactions in a whole biomolecular complex.  相似文献   

2.
Functional assays of genes have historically led to insights about the activities of a protein or protein cascade. However, the rapid expansion of genomic and proteomic information for a variety of diverse taxa is an alternative and powerful means of predicting function by comparing the enzymes and metabolic pathways used by different organisms. As part of the Giardia lamblia genome sequencing project, we routinely survey the complement of predicted proteins and compare those found in this putatively early diverging eukaryote with those of prokaryotes and more recently evolved eukaryotic lineages. Such comparisons reveal the minimal composition of conserved metabolic pathways, suggest which proteins may have been acquired by lateral transfer, and, by their absence, hint at functions lost in the transition from a free-living to a parasitic lifestyle. Here, we describe the use of bioinformatic approaches to investigate the complement and conservation of proteins in Giardia involved in the regulation of translation. We compare an FK506 binding protein homologue and phosphatidylinositol kinase-related kinase present in Giardia to those found in other eukaryotes for which complete genomic sequence data are available. Our investigation of the Giardia genome suggests that PIK-related kinases are of ancient origin and are highly conserved.  相似文献   

3.
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.  相似文献   

4.
Single-stranded guanine-rich (G-rich) DNA can fold into a four-stranded G-quadruplex structure and such structures are implicated in important biological processes and therapeutic applications. So far, bioinformatic analysis has identified up to several hundred thousand of putative quadruplex sequences in the genome of human and other animal. Given such a large number of sequences, a fast assay would be desired to experimentally verify the structure of these sequences. Here we describe a method that identifies the quadruplex structure by a single-stranded DNA binding protein from a thermoautotrophic archaeon. This protein binds single-stranded DNA in the unfolded, but not in the folded form. Upon binding to DNA, its fluorescence can be quenched by up to 70%. Formation of quadruplex greatly reduces fluorescence quenching in a K+-dependent manner. This structure-dependent quenching provides simple and fast detection of quadruplex in DNA at low concentration without DNA labelling.  相似文献   

5.
Processes that occur at membranes are essential for the viability of every cell, but such processes are the least well understood at the molecular level. The complex nature and physical properties of the molecular components involved, as well as the requirement for two separated aqueous compartments, restrict the experimental approaches that can be successfully applied to examine the structure, conformational changes and interactions of the membrane-bound proteins that accomplish these processes. In particular, to accurately elucidate the molecular mechanisms that effect and regulate such processes, one must use experimental approaches that do not disrupt the structural integrity or functionality of the protein-membrane complexes being examined. To best accomplish this goal, especially when large multicomponent complexes and native membranes are involved, the optimal experimental approach to use is most often fluorescence spectroscopy. Using multiple independent fluorescence techniques, one can determine structural information in real time and in intact membranes under native conditions that cannot be obtained by crystallography, electron microscopy and NMR techniques, among others. Furthermore, fluorescence techniques provide a comprehensive range of information, from kinetic to thermodynamic, about the assembly, structure, function and regulation of membrane-bound proteins and complexes. This article describes the use of various fluorescence techniques to characterize different aspects of proteins bound to or embedded in membranes.  相似文献   

6.
The main complicating factor in structure-based drug design is receptor rearrangement upon ligand binding (induced fit). It is the induced fit that complicates cross-docking of ligands from different ligand-receptor complexes. Previous studies have shown the necessity to include protein flexibility in ligand docking and virtual screening. Very few docking methods have been developed to predict the induced fit reliably and, at the same time, to improve on discriminating between binders and non-binders in the virtual screening process.We present an algorithm called the ICM-flexible receptor docking algorithm (IFREDA) to account for protein flexibility in virtual screening. By docking flexible ligands to a flexible receptor, IFREDA generates a discrete set of receptor conformations, which are then used to perform flexible ligand-rigid receptor docking and scoring. This is followed by a merging and shrinking step, where the results of the multiple virtual screenings are condensed to improve the enrichment factor. In the IFREDA approach, both side-chain rearrangements and essential backbone movements are taken into consideration, thus sampling adequately the conformational space of the receptor, even in cases of large loop movements.As a preliminary step, to show the importance of incorporating protein flexibility in ligand docking and virtual screening, and to validate the merging and shrinking procedure, we compiled an extensive small-scale virtual screening benchmark of 33 crystal structures of four different protein kinases sub-families (cAPK, CDK-2, P38 and LCK), where we obtained an enrichment factor fold-increase of 1.85±0.65 using two or three multiple experimental conformations. IFREDA was used in eight protein kinase complexes and was able to find the correct ligand conformation and discriminate the correct conformations from the “misdocked” conformations solely on the basis of energy calculation. Five of the generated structures were used in the small-scale virtual screening stage and, by merging and shrinking the results with those of the original structure, we show an enrichment factor fold increase of 1.89±0.60, comparable to that obtained using multiple experimental conformations.Our cross-docking tests on the protein kinase benchmark underscore the necessity of incorporating protein flexibility in both ligand docking and virtual screening. The methodology presented here will be extremely useful in cases where few or no experimental structures of complexes are available, while some binders are known.  相似文献   

7.
The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein‐ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug‐like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co‐occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Peptides are destined to play a major role as therapeutic agents. My laboratory is contributing to speeding up this process. On the one hand, we devote efforts to studying the molecular details and dynamics of the events that occur during molecular recognition at protein surfaces. We succeeded to design and synthesize peptides able to modulate these recognition events either permanently or in response to light. On the other hand, we are discovering and designing peptides able to cross biological barriers. Our aim is to use these peptides as shuttles for targeting therapeutic agents to organs, tissues, or cells, with a special emphasis on drug delivery to the brain. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Three‐dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time‐consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi‐automated protocol for isotopically‐labeled protein production using the Maxwell‐16, a commercially available bench top robot, that allows for single‐step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different 15N‐labeled proteins, accelerating the validation process by more than 10‐fold. The yield from a single channel of the Maxwell‐16 is sufficient for acquisition of a high‐quality 2D 1H‐15N‐HSQC spectrum using a 3‐mm sample cell and 5‐mm cryogenic NMR probe. Maxwell‐16 screening of a control group of proteins reproduced previous validation results from conventional small‐scale expression screening and large‐scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par‐3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U15N,13C] protein prepared using the Maxwell‐16. This novel semi‐automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale‐up steps.  相似文献   

10.
Purification of milligram quantities of target proteins is required for structural and biophysical studies. However, mammalian membrane proteins, many of which are important therapeutic targets, are too unstable to be expressed in heterologous hosts and to be solubilized by detergents. One of the most promising ways to overcome these limitations is to stabilize the membrane proteins by generating variants via introduction of truncated flexible regions, fusion partners, and site‐directed mutagenesis. Therefore, an effective screening strategy is a key to obtaining successful protein stabilization. Herein, we report the micro‐scale and high‐throughput screening of stabilized membrane protein variants using Saccharomyces cerevisiae as a host. All steps of the screening, including cultivation and disruption of cells, solubilization of the target protein, and the pretreatment for fluorescence‐detected size exclusion chromatography (FSEC), could be performed in a 96‐well microplate format. We demonstrated that the dispersion among wells was small, enabling detection of a small but important improvement in the protein stability. We also demonstrated that the thermally stable mutants of a human G protein‐coupled receptor could be distinguished based on an increase of the peak height in the FSEC profile, which was well correlated with increased ligand binding activity of the protein. This strategy represents a significant platform for handling numerous mutants, similar to alanine scanning.  相似文献   

11.
Domain swapping has been shown to be an important mechanism controlling multiprotein assembly and has been suggested recently as a possible mechanism underlying protein aggregation. Understanding oligomerization via domain swapping is therefore of theoretical and practical importance. By using a symmetrized structure-based (Gō) model, we demonstrate that in the free-energy landscape of domain swapping, a large free-energy barrier separates monomeric and domain-swapped dimeric configurations. We investigate the effect of finite monomer concentration, by implementing a new semi-analytical method, which involves computing the second virial coefficient, a thermodynamic indicator of inter-molecular interactions. This method, together with the symmetrized structure-based (Gō) model, minimizes the need for expensive many-protein simulations, providing a convenient framework to investigate concentration effect. Finally, we perform direct simulations of domain-swapped trimer formation, showing that this modeling approach can be used for higher-order oligomers.  相似文献   

12.
With the decline in productivity of drug‐development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence‐based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure‐based approach, in which protein‐peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 505–513, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.  相似文献   

14.
Mid‐to‐high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite‐based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun‐induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME‐2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high‐latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start‐of‐season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2–3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space‐based SIF measurements to light‐use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen boreal ecosystems.  相似文献   

15.
Protein fluorescence is a powerful tool for studying protein structure and dynamics if we have a means to interpret the spectral data in terms of protein structural properties. Our previous research successfully provided this support through the development of individual software modules implementing the algorithms for fluorescence and structural analyses. Now we have integrated the developed software modules, introduced a new program for the assignment of tryptophan residues to spectral-structural classes, and created a web-based toolkit PFAST: protein fluorescence and structural toolkit: http://pfast.phys.uri.edu/. PFAST contains three modules: (1) FCAT is a fluorescence-correlation analysis tool, which decomposes protein fluorescence spectra to reveal the spectral components of individual tryptophan residues or groups of tryptophan residues located close to each other, and assigns spectral components to one of five previously established spectral-structural classes. (2) SCAT is a structural-correlation analysis tool for the calculation of the structural parameters of the environment of tryptophan residues from the atomic structures of the proteins from the Protein Data Bank (PDB), and for the assignment of tryptophan residues to one of five spectral-structural classes. (3) The last module is a PFAST database that contains protein fluorescence and structural data obtained from results of the FCAT and SCAT analyses.  相似文献   

16.
17.
The D-trehalose/D-maltose-binding protein (TMBP), a monomeric protein of 48 kDa, is one component of the trehalose and maltose uptake system. In the hyperthermophilic archaeon T. litoralis this is mediated by a protein-dependent ATP-binding cassette system transporter. The gene coding for a thermostable TMBP from the archaeon T. litoralis has been cloned, and the recombinant protein has been expressed in E. coli. The recombinant TMBP has been purified to homogeneity and characterized. It exhibits the same functional and structural properties as the native one. In fact, it is highly thermostable and binds both trehalose and maltose with high affinity. In this work we used differential scanning calorimetry studies together with a detailed analysis, at the molecular level, of the three-dimensional protein structure to shed light on the basis of the high thermostability exhibited by the recombinant TMBP from the archaeon T. litoralis. The obtained data suggest that the presence of trehalose does not change the overall mechanism of the denaturation of this protein but it selectively modifies the stability of the TMBP structural domains.  相似文献   

18.
Drug–drug interactions (DDIs) and associated toxicity from cardiovascular drugs represents a major problem for effective co-administration of cardiovascular therapeutics. A significant amount of drug toxicity from DDIs occurs because of drug interactions and multiple cardiovascular drug binding to the efflux transporter P-glycoprotein (Pgp), which is particularly problematic for cardiovascular drugs because of their relatively low therapeutic indexes. The calcium channel antagonist, verapamil and the cardiac glycoside, digoxin, exhibit DDIs with Pgp through non-competitive inhibition of digoxin transport, which leads to elevated digoxin plasma concentrations and digoxin toxicity. In the present study, verapamil-induced ATPase activation kinetics were biphasic implying at least two verapamil-binding sites on Pgp, whereas monophasic digoxin activation of Pgp-coupled ATPase kinetics suggested a single digoxin-binding site. Using intrinsic protein fluorescence and the saturation transfer double difference (STDD) NMR techniques to probe drug–Pgp interactions, verapamil was found to have little effect on digoxin–Pgp interactions at low concentrations of verapamil, which is consistent with simultaneous binding of the drugs and non-competitive inhibition. Higher concentrations of verapamil caused significant disruption of digoxin–Pgp interactions that suggested overlapping and competing drug-binding sites. These interactions correlated to drug-induced conformational changes deduced from acrylamide quenching of Pgp tryptophan fluorescence. Also, Pgp-coupled ATPase activity kinetics measured with a range of verapamil and digoxin concentrations fit well to a DDI model encompassing non-competitive and competitive inhibition of digoxin by verapamil. The results and previous transport studies were combined into a comprehensive model of verapamil–digoxin DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.  相似文献   

19.
Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large‐scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence‐based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures.  相似文献   

20.
The in vivo identification and characterization of protein-protein interactions (PPIs) are essential to understand cellular events in living organisms. In this review, we focus on protein complementation assays (PCAs) that have been developed to detect in vivo protein interactions as well as their modulation or spatial and temporal changes. The uses of PCAs are increasing, spanning different areas such as the study of biochemical networks, screening for protein inhibitors and determination of drug effects. Emphasis is given to approaches that rely on signals of spectroscopic nature (i.e. fluorescence or luminescence), the ones that are more directly related to bioimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号