首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate if treatment of eCG-superovulated goats with fluorogestone acetate (FGA) would increase the number and quality of embryos recovered. Goats (n = 25) were given an intravaginal sponge containing 45 mg FGA for 12 days, with 1000 IU eCG and 7.5mg of Luprostiol (a PGF(2 alpha) analog) given -48 and 0 h relative to sponge removal. Goats were mated by natural service every 12h during estrus and surgical embryo collection was done 6 days after the last mating. There were two treatment groups; those in the FGA group (n = 13) had a FGA sponge from 8h after mating to embryo collection, whereas goats in the control group (n = 12) did not receive any post-mating treatment. Premature luteal regression occurred in 61.5% (8/13) and 83.3% (10/12) of the goats in the FGA and the control groups, respectively (P > 0.05). Corpus luteum life span averaged 4 days in goats with premature luteolysis. The mean (+/- S.E.) number of transferable embryos was 5.7 +/- 1.6 in the FGA group and 0.1 +/- 0.1 in the control group (P < 0.05). Within the FGA group, the embryo recovery rate was similar in goats with premature luteal regression compared to those with normal luteal function, although non-transferable embryos were only found in goats with premature luteal regression. In conclusion, post-breeding treatment with FGA increased embryonic survival in eCG-superovulated goats, even though it did not prevent premature luteal regression.  相似文献   

2.
In sheep, induction of ovulation during anoestrus is accompanied by a high incidence of short luteal phases, though pre-treatment with progesterone can overcome this problem. We have investigated the effects of supplementing oestradiol during GnRH-induced ovulation on subsequent PGF2alpha release and luteal life span. Thirty anoestrous crossbred ewes received 250 ng GnRH i.v. at 2 h intervals for 48 h to induce ovulation either alone (group 1; n=10) or in association with either an i.m. injection of 20 mg progesterone 3 days earlier (group 2; n=10) or 3 i.m. injections of 10 microg oestradiol at 8 h intervals on the second day of GnRH treatment (group 3; n=10). Laparoscopy, performed 3 days following GnRH to confirm ovulation and 8 days later, coupled with plasma progesterone analysis were used to determine luteal life span. On day 4 following GnRH, plasma samples were collected at 20 min intervals for 8 h to monitor PGF2alpha release. One ewe from group 1 failed to ovulate and was excluded from further analysis. All groups showed an increase (P<0.01) in plasma oestradiol during GnRH treatment, with group 3 showing a marked (P<0.001) increase over that seen in the other two groups. In group 1 there were 1.4+/-0.2 PGF2alpha episodes/ewe/8 h. In group 2, pre-treatment with progesterone caused the complete inhibition of PGF2alpha episodes (0 episodes/ewe/8 h) while in group 3, treatment with oestradiol resulted in a significant reduction (0.3+/-0.1 episodes/ewe/8 h) compared with group 1 (P<0.01). In group 1, 9/9 ewes exhibited short cycles compared with 2/10 ewes in group 2 (P<0.01). In group 3 the proportion of ewes showing short cycles 7/10 ewes was not significantly different from the other groups. While treatment with oestradiol caused a significant attenuation of PGF2alpha release, this was associated with only a partial reduction in the incidence of short cycles.  相似文献   

3.
Kim IH  Suh GH  Son DS 《Theriogenology》2003,60(5):809-817
The objective of this study was to evaluate pregnancy rates in lactating Holstein cows treated with an Ovsynch protocol (GnRH-PGF(2alpha)-GnRH) or a progesterone-based timed AI (TAI) protocol, and to determine the factors that may influence pregnancy rate following protocol treatment. In experiment 1, lactating Holstein cows were randomly assigned to three treatments: (1) an injection of GnRH (Day 0), an injection of PGF(2alpha) on Day 7, a second injection of GnRH on Day 9, and TAI 16h after the second GnRH injection (GPG group, n = 34); (2) insertion of a CIDR intravaginal progesterone (1.9g) device combined with a capsule containing 10mg estradiol benzoate (Day 0), an injection of PGF(2alpha) and removal of the device on Day 7, an injection of GnRH on Day 9, and TAI 16h after the GnRH injection (CPG group, n = 34); (3) an injection of PGF(2alpha) after confirming the presence of CL by ultrasonographical observation and artificial insemination at estrus (AIE) (P group, n = 75). The pregnancy rate after TAI following the CPG protocol (41.2%) was higher (P<0.05) than that after TAI following the GPG protocol (20.6%) and that after AIE (20.0%). In experiment 2, lactating Holstein cows were randomly assigned to two treatments: a GPG group (n = 31) and a CPG group (n = 31). The GPG and CPG protocols were identical to those used in experiment 1. The proportion of cows with premature estrus prior to injection of PGF(2alpha) and with incomplete luteal regression tended (P = 0.056) to be or were greater (P<0.05) in the GPG group (4/31, 8/31) than in the CPG group (0/31, 2/31), respectively. Average diameters of dominant follicles (1.5+/-0.1mm versus 1.4+/-0.1mm) on Day 7 and preovulatory follicles (1.8+/-0.1mm versus 1.6+/-0.1mm) on Day 9, and the proportion of cows with synchronized ovulation by 40h after the second GnRH injection were not different (81.5% versus 87.1%, P>0.05) between groups, respectively. We conclude that the pregnancy rate after TAI following the CPG protocol was higher than that after TAI following the GPG protocol, probably due to a decreased incidence of premature estrus and incomplete luteal regression.  相似文献   

4.
The aims of this study were to compare stero?dogenesis (progesterone, androstenedione and estradiol production) and response to LH and FSH challenge by whole perifused follicles 4 to 5.5 mm in diameter, obtained at different periods of the breeding season (onset, middle, end), during anestrus and the luteal phase. We have observed that all follicles do not have the same stero?dogenetic potential and do not respond with the same intensity to LH and FSH. At the middle of the breeding season, LH and FSH supplementation was ineffective in increasing progesterone secretion by follicles (0.19+/-0.05 vs. 0.20+/-0.03 ng/mL). In contrast, gonadotrophin challenge elicited significant (P<0.05) increases in androstenedione (0.94+/-0.34 vs. 0.35+/-0.09 ng/mL) and estradiol (120+/-11 vs. 49+/-10 pg/mL) production immediately after its administration. At the onset of the breeding season, steroidogenesis was identical under both basal and gonadotrophin-stimulated conditions unlike that in middle of the breeding season. However follicles were more sensitive to the gonadotrophin challenge in terms of estradiol production than those collected at the middle of the breeding season (220+/-45 vs. 120+/-11 pg/mL). Follicles obtained at the end of the breeding season featured higher progesterone (2.61+/-0.81 vs. 0.19+/-0.05 ng/mL; P<0.05) and lower estradiol production (10+/-3 vs. 49+/-10 pg/mL; P<0.05) that was not influenced by LH and FSH. Basal androstenedione secretion was comparable to that observed at the middle of the breeding season (0.42+/-0.10 vs. 0.35+/-0.09 ng/mL), but the response to stimulation was significantly higher (1.82+/-0.61 vs. 0.94+/-0.34 ng/mL; P<0.05). In anoestrus and the luteal phase, follicles presented higher progesterone and androstenedione and lower estradiol concentrations (P<0.05) compared with those obtained during the follicular phase at the middle of the breeding season. In the luteal phase, follicles remained capable of responding to LH-FSH challenge by increasing estradiol secretion (9+/-1 before and 21+/-6 pg/mL after LH-FSH; P<0.05). In contrast, in the luteal phase, estradiol production was not increased by LH-FSH challenge (7+/-2 vs. 12+/-4 pg/mL).  相似文献   

5.
Transvaginal ultrasound-guided luteal biopsy was used to evaluate the effects of prostaglandin (PG)F2alpha on steady-state concentrations of mRNA for specific genes that may be involved in regression of the corpus luteum (CL). Eight days after ovulation (Hour 0), mares (n=8/group) were randomized into three groups: control (no treatment or biopsy), saline+biopsy (saline treatment at Hour 0 and luteal biopsy at Hour 12), or PGF2alpha+biopsy (5mg PGF2alpha at Hour 0 and luteal biopsy at Hour 12). The effects of biopsy on CL were compared between the controls (no biopsy) and saline+biopsy group. At Hour 24 (12h after biopsy) there was a decrease in circulating progesterone in saline group to 56% of pre-biopsy values, indicating an effect of biopsy on luteal function. Mean plasma progesterone concentrations were lower (P<0.001) at Hour 12 in the PG group compared to the other two groups. The relative concentrations of mRNA for different genes in luteal tissue at Hour 12 was quantified by real time PCR. Compared to saline-treated mares, treatment with PGF2alpha increased mRNA for cyclooxygenase-2 (Cox-2, 310%, P<0.006), but decreased mRNA for LH receptor to 44% (P<0.05), steroidogenic acute regulatory protein to 22% (P<0.001), and aromatase to 43% (P<0.1) of controls. There was no difference in mRNA levels for PGF2alpha receptor between PG and saline-treated groups. Results indicated that luteal biopsy alters subsequent luteal function. However, the biopsy approach was effective for collecting CL tissue for demonstrating dynamic changes in steady-state levels of mRNAs during PGF2alpha-induced luteolysis. Increased Cox-2 mRNA concentrations suggested that exogenous PGF2alpha induced the synthesis of intraluteal PGF2alpha. Thus, the findings are consistent with the concept that an intraluteal autocrine loop augments the luteolytic effect of uterine PGF2alpha in mares.  相似文献   

6.
The objective of this study was to determine if the primary circulating metabolite of PGF2alpha, 13,14-dihydro-15-keto-PGF2alpha (PGFM), is biologically active and would induce luteolysis in nonpregnant mares. On Day 9 after ovulation, mares (n = 7/group) were randomly assigned to receive: 1) saline control, 2) 10 mg PGF2alpha or 3) 10 mg PGFM in 5 mL 0.9% sterile saline i.m. On Days 0 through 16, blood was collected for progesterone analysis. In addition, blood was collected immediately prior to treatment, hourly for 6 h, and then at 12 and 24 h after treatment for progesterone and PGFM analysis; PGFM was measured to verify that equivalent amounts of hormone were administered to PGF2alpha- and PGFM-treated mares. Mares were considered to have undergone luteolysis if progesterone decreased to < or = 1.0 ng/mL within 24 h following treatment. Luteolysis was induced in 0/7 control, 7/7 PGF2alpha-treated, and 0/7 PGFM-treated mares. There was no difference (P>0.1) in the occurrence of luteolysis in control and PGFM-treated mares. More (P<0.001) PGF2alpha-treated mares underwent luteolysis than control or PGFM-treated mares. There was no difference (P>0.1) in progesterone concentrations between control and PGFM-treated mares on Days 10 through 16. Progesterone concentrations were lower (P<0.01) on Days 10 through 14 in PGF2alpha-treated compared with control and PGFM-treated mares. There was no difference (P>0.05) in PGFM concentrations between PGF2alpha- and PGFM-treated mares; PGFM concentrations in both groups were higher (P<0.001) than in control mares. These results do not support the hypothesis that PGFM is biologically active in the mare, since there was no difference in corpora luteal function between PGFM-treated and control mares.  相似文献   

7.
The present study aimed to determine systemic and local effects of corpora lutea (CL), on follicular dynamics throughout the estrous cycle. All follicles >or=2 mm and CL were assessed by daily transrectal ultrasonography in 12 West African ewes. Blood samples were collected to determine plasma concentration of progesterone. Fifteen estrous cycles were evaluated with a mean interovulatory interval of 16.8+/-0.2 days. Two (13.3%), 10 (66.7%) and 3 (20%) of the estrous cycles had 2, 3 and 4 waves of follicular development, respectively. In sheep with three waves of follicular development, both the length of growing phase and the growth rate of dominant follicles from midluteal wave II were diminished (3.4+/-0.3 days, P<0.0001, and 0.4+/-0.1 mm/day, P<0.01, respectively) when compared to follicles from early luteal phase (wave I, 4.1+/-0.2 days, and 0.7+/-0.1 mm/day) or late luteal phase (wave III, 6.3+/-0.4 mm and 0.6+/-0.1 mm/day). The diameter of the dominant follicle was smaller during the midluteal phase (3.9+/-0.1 mm, P<0.0001) than in the early and late luteal phase (5.0+/-0.2 and 5.7+/-0.2 mm; respectively). The effect of the dominant follicle was less during midluteal phase, because number of accompanying smaller follicles was fewer (P<0.01) in waves I and III (6.3+/-0.9 compared with 3.4+/-0.8 and 2.3+/-0.7). The number of follicles was also different between ovaries that had CL and those that did not. The total number of large follicles during the luteal phase was less in ovaries with CL (0.9+/-0.5 compared with 2.7+/-0.3; P<0.01), as was the mean daily number of both large (0.1+/-0.02 compared with 0.2+/-0.02; P<0.001) and total number of follicles >or=2 mm (2.5+/-0.1 compared with 3.3+/-0.1; P<0.01). Current results indicate that the presence of a functional CL may exert both systemic and local effects on the population of follicles, affecting the dominance exerted by large follicles.  相似文献   

8.
During the preovulatory period in heifers that ovulate from two compared to one follicle, circulating concentrations of estradiol-17β (E2) are greater, diameter of follicles and concentration of FSH are reduced, and the LH surge occurs sooner. The effect of increased E2 on the reported characteristics of double ovulation was studied by treating heifers with 0.07 mg E2, 0.09 mg E2, or vehicle in four treatments at 6-h intervals (n=6 heifers/group), beginning at the time of expected follicle deviation (largest follicle, 8.5mm). There were no significant differences on follicle diameters or hormone concentrations between the 0.07 and 0.09 mg E2 groups, and heifers were combined into one E2 group (n=12). The E2 treatments induced concomitant preovulatory surges in LH and FSH at 34.0 ± 2.6h after first treatment, compared to 57.6 ± 4.5h in the vehicle group (P<0.0002). The E2 treatments did not affect FSH concentrations during the preovulatory gonadotropin surge. The diameter of the preovulatory follicle at the LH peak was smaller (P<0.0001) in the E2-treated group (10.2 ± 0.2mm) than in the vehicle group (13.1 ± 0.6mm). The hypothesis was not supported that the previously reported increase in circulating E2 in heifers with double preovulatory follicles accounts for the reported lesser concentrations in the preovulatory FSH surge in heifers with double ovulations. Hypotheses were supported that the reported earlier occurrence of the preovulatory LH surge and smaller preovulatory follicles in heifers with double ovulations are attributable to the reported increase in E2 from the double preovulatory follicles.  相似文献   

9.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

10.
The effects of fluorogestone acetate (FGA) and/or pregnant mare serum gonadotrophin (PMSG) on follicular growth and LH secretion in cyclic ewes were determined. Suffolk ewes (n = 40), previously synchronized with cloprostenol were divided into 4 experimental groups (n = 10 ewes per group). Group I served as the control, while groups II, III and IV received FGA, PMSG, FGA and PMSG respectively. Four ewes of each group underwent daily laparascopy for 17 d. All the ovarian follicles >/= 2 mm were measured, and their relative locations were recorded on an ovarian map in order to follow the sequential development of each individual follicle. Comparisons were made of the mean day of emergence and the mean number of small, medium and large follicles, the atresia rate and the ovulation rate. For each group, 3 waves of follicular growth and atresia were observed during the cycle. During luteal phase, FGA treatment accelerated the mechanisms of follicular growth but reduced the number of large follicles and increased the atresia rate. In the follicular phase, FGA treatment was detrimental to both the number of large follicles and the ovulation rate. By contrast, PMSG enhanced recruitment of small follicles and the ovulation rate. Serial blood samples were collected during the luteal and follicular phases to study LH secretion. None of the treatments had any effect on LH secretion patterns.  相似文献   

11.
The relationship between progesterone (P4) synthesis by luteal tissue and prostaglandin F (PGF) synthesis by endometrium and luteal tissue from two stages of the cycle, Days 7 to 8 and 15 to 16, was determined. Luteal and endometrial tissues were collected from pigs in three experimental groups at two stages of the cycle: (A) 6 pigs on Days 7 to 8 with spontaneous, 5 to 6 day old corpora lutea (CL); (B) 5 pigs on Days 15 to 16 with spontaneous, 13 to 14 day old CL; and (C) 6 pigs on Days 15 to 16 with spontaneous, 13 to 14 day old CL and 5 to 6 day old CL induced by pregnant mares serum gonadotropin (PMSG) and human chorionic gonadotropin (HCG) injections. Pigs with spontaneous, 13 to 14 day old CL of the cycle and PMSG-HCG induced accessory, 5 to 6 day old CL were used so that P4 and PGF synthesis in tissue from old and new CL could be compared in the same pig on Day 15 to 16 of the cycle. Tissues (100 mg minces) were incubated in 5 ml of Krebs Ringer solution in an atmosphere of 95% 02:5% CO2 for 2 hours at 0° C, 37° C, or 37° C with 1.3 x 10−4M indomethacin (IND). An aliquot of the incubation medium and an aliquot of the supernatant after homogenization of the tissue in the remaining medium of each flask was quantified for P4 and PGF by radioimmunoassay. P4 and PGF release into the medium and total accumulation of P4 and PGF in the flasks indicated that synthesis had occured at 37° C. Compared to tissue from 13 to 14 day old CL, tissue from 5 to 6 day old CL synthesized more P4 per flask (53.9 25.0 ng/mg tissue, P<.001) and released more P4 into the medium (20.8 8.8 ng/mg, P<.001). P4 synthesis by luteal tissue from 5 to 6 day old and 13 to 14 day old CL from pigs in group C was similar to P4 synthesis by luteal tissue from pigs in group A and group B, respectively. Luteul PGF synthesis was not affected significantly by either the age of the CL or by PMSG-HCG treatment. For endometrial samples, the synthesis of PGF was not significantly different among pigs in groups A, B and C. If uterine PGF is involved in luteal regression in the pig, the sensitivity of the CL to PGF may be more important than an increase in PGF secretion during the late luteal phase of the estrous cycle.  相似文献   

12.
The objective of this study was to examine the quality of successive dominant follicles (DFs) after induced heat stress. Non-lactating dairy cows expressing estrus at normal intervals were allocated randomly to heat stress (HS; n=8) and control (C; n=8) groups. Cows received GnRH (100 microg, i.m.) on Day 0, a progesterone CIDR-B device on Day 4 and prostaglandin (PGF(2alpha); 25mg, i.m.) on Day 7 upon removal of the CIDR device. The DF and follicles >5mm were aspirated on Day 8, and GnRH (100 microg) injected following aspiration, to initiate a new follicular wave. In this manner, a DF was aspirated every 8 days (one "follicular cycle") for 10 cycles. After the first follicular cycle, HS cows were placed in environmental chambers for 7 days during the second follicular cycle (8h per day at 43.3 degrees C set point and 16h per day at 24 degrees C for 4 days, and 8h per day at 43.3 degrees C set point and 16h per day at 32.2 degrees C set point for 3 days; relative humidity, 40%) and thereafter maintained outdoors with control cows at a mean ambient temperature (18.5 degrees C; range 12.7-26 degrees C). Rectal temperature increased (P<0.001) in HS as compared with C cows (39.28+/-0.01 degrees C versus 38.78+/-0.01 degrees C). Concentrations of estradiol (E(2); 1662+/-189 versus 1493+/-188ng/ml) and progesterone (P(4); 44.7+/-5 versus 54.1+/-5.1ng/ml) in follicular fluid (FF) of DF did not differ between C and HS treatments, respectively. Total FF protein concentration was greater (P<0.05) in HS (99.7+/-2.3mg/ml) than in C (92.7+/-2.3mg/ml). Heat shock protein 90 (Hsp 90) in FF was not altered by heat stress. IGF-II ligand blots were conducted with FF samples (n=79) from four HS and four C cows. There was a predominance of IGFBP-3 in 76 of 79 FF samples, indicating healthy follicular status, and only three FF samples had the lower molecular weight IGFBP-2 indicative of a poor quality follicle. Plasma P(4) and E(2) concentrations did not differ between C and HS groups. The number of class 1 and 3 follicles increased during and just after heat stress, but the number of class 2 follicles did not differ between C and HS cows. Heat stress appeared to induce a decrease in follicular dominance, but GnRH-induced follicular cycles resulted in development of healthy preovulatory follicles in both groups.  相似文献   

13.
Two experiments were carried out on Ionica dairy goats in order to test the efficiency of: (1) short term-5-day combined progestogen-PGF2α-GnRH treatments on induction/synchronization of oestrus and fertility after natural mating in lactating goats and during the transition period (Experiment 1); (2) short term-9-day FGA-PGF2α-eCG treatments on synchronizing oestrus and ovulation (Experiment 2.1) and artificial insemination (AI) fixed time system in synchronized does (Experiment 2.2), during the breeding season. In Experiment 1, four treatment groups (N=24) were considered: (1) FPe-11d - control, FGA intravaginal sponges (11 days)+PGF2α (9th d)+eCG (11th d); (2) FPe-5d, FGA (5 days)+PGF2α (5th d)+eCG (5th d); (3) PFe-5d, PGF2α (D0)+FGA (5 days)+eCG (5th d); (4) GPe-5d, GnRH (D0)+PGF2α (5th d)+eCG (5th d). Goats were checked for oestrus and naturally mated. The occurrence of oestrus was 75.0, 78.3, 86.4, and 58.3% for groups 1-4, respectively, with significant differences (P<0.05) between groups 3 and 4. Interval to oestrus was earlier (P<0.05) in GPE-5d than in FPe-11d control group. There were no differences between the groups (P>0.05) in fertility or in prolificacy. In Experiment 2.1, 22 goats were subdivided into two treatment groups (N=11): (T1) FPe-11d (control), FGA (11 days)+PGF2α (9th d)+eCG (11th d); (T2) FPe-9d, FGA (9 days)+PGF2α (7th d)+eCG (9th d). Oestrus and ovulation times were monitored every 4h; ovulation rate was also determined. The induction of oestrus ranged from 91 to 100% and all goats ovulated. Intervals to oestrus, from the onset of oestrus to ovulation, from sponge removal to ovulation, and ovulation rates were 28.2±4.9 and 26.0±4.0h, 25.3±9.2 and 28.9±7.4h, 53.5±7.6 and 54.9±7.1h, 3.7±1.6 and 2.4±1.4 corpora lutea (P<0.05) for T1 and T2, respectively. In T2 a great abnormal ovulatory response was observed. In Experiment 2.2, 48 goats were synchronized with FPe-9d treatment and subjected to AI, performed 50h after s.r. with frozen semen, and subdivided into 2 AI system groups (N=24): T3, exocervical AI (100×10(6)Spz/doe); T4, intrauterine AI (20×10(6)Spz/doe). Fertility rate was higher (P<0.05) in T4. It seems that short term-5-day combined progestogen-PGF2α-GnRH-eCG treatments need to be investigated for AI fixed time.  相似文献   

14.
The relationship between progesterone (P4) synthesis in vitro by luteal tissue and prostaglandin F (PGF) synthesis in vitro by endometrium and luteal tissue from two stages of the cycle, Days 7 to 8 and 15 to 16, was determined. Luteal and endometrial tissues were collected from pigs in three experimental groups at two stages of the cycle: (A) 6 pigs on Days 7 to 8 with spontaneous, 5 to 6 day old corpora lutea (CL); (B) 5 pigs on Days 15 to 16 with spontaneous, 13 to 14 day old CL; and (C) 6 pigs on Days 15 to 16 with spontaneous, 13 to 14 day old CL and 5 to 6 day old CL induced by pregnant mares serum gonadotropin (PMSG) and human chorionic gonadotropin (HCG) injections. Pigs with spontaneous, 13 to 14 day old CL of the cycle and PMSG-HCG induced accessory, 5 to 6 day old CL were used so that P4 and PGF synthesis in tissue from old and new CL could be compared in the same pig on Day 15 to 16 of the cycle. Tissues (100 mg minces) were incubated in 5 ml of Krebs Ringer solution in an atmosphere of 95% 02:5% CO2 for 2 hours at 0° C, 37° C, or 37° C with 1.3 x 10?4M indomethacin (IND). An aliquot of the incubation medium and an aliquot of the supernatant after homogenization of the tissue in the remaining medium of each flask was quantified for P4 and PGF by radioimmunoassay. P4 and PGF release into the medium and total accumulation of P4 and PGF in the flasks indicated that de novo synthesis had occured at 37° C. Compared to tissue from 13 to 14 day old CL, tissue from 5 to 6 day old CL synthesized more P4 per flask (53.9 vs 25.0 ng/mg tissue, P<.001) and released more P4 into the medium (20.8 vs 8.8 ng/mg, P<.001). P4 synthesis by luteal tissue from 5 to 6 day old and 13 to 14 day old CL from pigs in group C was similar to P4 synthesis by luteal tissue from pigs in group A and group B, respectively. Luteul PGF synthesis was not affected significantly by either the age of the CL or by PMSG-HCG treatment. For endometrial samples, the synthesis of PGF was not significantly different among pigs in groups A, B and C. If uterine PGF is involved in luteal regression in the pig, the sensitivity of the CL to PGF may be more important than an increase in PGF secretion during the late luteal phase of the estrous cycle.  相似文献   

15.
The effect of altered LH concentrations on the deviation in growth rates between the 2 largest follicles was studied in pony mares. The progestational phase was shortened by administration of PGF2alpha on Day 10 (Day 0=ovulation; n=9) or lengthened by daily administration of 100 mg of progesterone on Days 10 to 30 (n=11; controls, n=10). All follicles > or = 5 mm were ablated on Day 10 in all groups to initiate a new follicular wave. The interovulatory interval was not altered by the PGF2alpha treatment despite a 4-day earlier decrease in progesterone concentrations. Time required for growth of the follicles of the new wave apparently delayed the interval to ovulation after luteolysis. The FSH concentrations of the first post-ablation FSH surge were not different among groups. A second FSH surge with an associated follicular wave began by Day 22 in 7 of 11 mares in the progesterone group and in 0 of 19 mares in the other groups, indicating reduced functional competence of the largest follicle. A prolonged elevation in LH concentrations began on the mean day of wave emergence (Day 11) in the prostaglandin group (19.2 +/- 2.2 vs 9.0 +/- 0.7 ng/mL in controls; P<0.05), an average of 4 d before an increase in the controls. Concentrations of LH in the progesterone group initially increased until Day 14 and then decreased so that by Day 18 the concentrations were lower (P<0.05) than in the control group (12.9 +/- 1.6 vs 20.2 +/- 2.6 ng/mL). Neither the early and prolonged increase nor the early decrease in LH concentrations altered the growth profile of the second-largest follicle, suggesting that LH was not involved in the initiation of deviation. However, the early decrease in LH concentrations in the progesterone group was followed by a smaller (P<0.05) diameter of the largest follicle by Day 20 (26.9 +/- 1.7 mm) than the controls (30.3 +/- 1.7 mm), suggesting that LH was necessary for continued growth of the largest follicle after deviation.  相似文献   

16.
The concentrations of six steroids and of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in follicular fluid from preovulatory and large atretic follicles of normal Holstein heifers and from preovulatory follicles of heifers treated with a hormonal regimen that induces superovulation. Follicular fluid from preovulatory follicles of normal animals obtained prior to the LH surge contained extremely high concentrations of estradiol (1.1 +/- 0.06 micrograms/ml), with estrone concentrations about 20-fold less. Androstenedione was the predominant aromatizable androgen (278 +/- 44 ng/ml; testosterone = 150 +/- 39 ng/ml). Pregnenolone (40 +/- 3 ng/ml) was consistently higher than progesterone (25 +/- 3 ng/ml). In fluid obtained at 15 and 24 h after the onset of estrus, estradiol concentrations had declined 6- and 12-fold, respectively; androgen concentrations had decreased 10- to 20-fold; and progesterone concentrations were increased, whereas pregnenolone concentrations had declined. Concentrations of LH and FSH in these follicles were similar to plasma levels of these hormones before and after the gonadotropin surges. The most striking difference between mean steroid levels in large atretic follicles (greater than 1 cm in diameter) and preovulatory follicles obtained before the LH surge was that estradiol concentrations were about 150 times lower in atretic follicles. Atretic follicles also had much lower concentrations of LH and slightly lower concentrations of FSH than preovulatory follicles. Hormone concentrations in follicles obtained at 12 h after the onset of estrus from heifers primed for superovulation were similar to those observed in normal preovulatory follicles at estrus + 15 h, except that estrogen concentrations were about 6-40 times lower and there was more variability among animals for both steroid and gonadotropin concentrations. Variability in the concentrations of reproductive hormones in fluid from heifers primed for superovulation suggests that the variations in numbers of normal embryos obtained with this treatment may be due, at least in part, to abnormal follicular steroidogenesis.  相似文献   

17.
18.
The objective of this study was to evaluate the effects of treatment with an intravaginal progesterone-releasing device (CIDR) and estradiol benzoate (EB) on follicular dynamics in Bos indicus (n=23), Bos taurus (n=25), and cross-bred (n=23) heifers. To assess the influence of reduced serum progesterone concentrations during 8 days of treatment with a progesterone-releasing device on follicular dynamics, half of the heifers received PGF at CIDR insertion (Day 0; 3 x 2 factorial design). Mean (+/-S.E.M.) serum progesterone concentrations during CIDR treatment varied (P<0.05) among genetic groups: B. indicus (5.4+/-0.1 ng/mL), B. taurus (3.3+/-0.0 ng/mL), and cross-bred (4.3+/-0.1 ng/mL). Maximum diameter of the dominant follicle (DF) was smaller (P<0.01) in B. indicus heifers (9.5+/-0.5 mm) than in cross-bred (12.3+/-0.4 mm) or B. taurus heifers (11.6+/-0.5 mm). B. indicus experienced lower (P<0.01) ovulation rate (39.1%) than did B. taurus (72.7%) and cross-bred (84.0%). Heifers treated with PGF on Day 0 had lower (P<0.05) serum progesterone concentrations during progesterone treatment. The PGF treatment on Day 0 increased (P<0.01) the diameter of the DF (11.9+/-0.4 mm vs. 10.5+/-0.4 mm). Moreover, greater (P=0.02) ovulation rates (78.8 vs. 54.0%) occurred in heifers treated with PGF on Day 0. In summary, B. indicus heifers had greater serum progesterone concentrations, smaller DF diameter, and a lower ovulation rate compared to B. taurus heifers. Prostaglandin treatment on the day of CIDR insertion reduced serum progesterone during treatment, and resulted in increased maximum DF diameter and ovulation rate.  相似文献   

19.
The aim of the present study was to determine the effect of fluorogestone acetate (FGA) administered after mating, on embryo production in the dairy goat subjected to conventional superovulatory and embryo recovery protocols. Adult does, most of them of the French Alpine breed, were randomly assigned after a FSH-superovulatory estrus and fertile matings to a control group (n=20) or to a treated group (n=20) in which intravaginal sponges impregnated with FGA were inserted after mating and remove before embryo collection (day 6). Blood samples were collected every 12h from days 1 to 7 post-estrus and serum progesterone concentrations were determined. The FGA-group had a lesser percentage of does with normal corpora lutea (CL) and a greater percentage of animals with CL in regression or mixed (normal and in regression) when compared with the control group (13.3 and 64.7%, 53.3 and 23.5%, and 33.3 and 11.8%, respectively; P<0.05). Mean number of normal CL per doe was less and mean number of regressed CL greater in FGA as compared with the control group (4.2 compared with 10.7 and 8.5 compared with 3.6, respectively; P<0.05). There were no differences (P>0.05) in recovery rate, total number of CL, total recovered structures, oocytes and transferable and non-transferable embryos between groups. Serum progesterone concentrations from day 5 to 7 post-estrus were lower (P<0.05) in FGA as compared with the control group. Percentage of does with luteal failure on day 6 post-estrus was greater in FGA as compared with the control group (86.6 compared with 33.3%; P<0.01). When considering only does with luteal failure on day 6 post-estrus, mean total recovered structures, transferable embryos and percentage of does rendering > or =3 transferable embryos were greater in the FGA compared with the control group (6.3 and 1.3 structures, 4.5 and 1.2 embryos, 67 and 17%, respectively; P<0.05). In does not having luteal failure, FGA administration did not appear to affect embryo production or embryo survival. These results indicate that FGA administration after mating improves embryo recovery in dairy goats with luteal failure after superovulatory treatment. However, it also increases the incidence of luteal regression when administered early in the estrous cycle.  相似文献   

20.
The objective of this study was to characterize follicular development, onset of oestrus and preovulatory LH surge, and in vivo embryo yields of sheep superovulated after treatment with a single dose of 1.5mg of GnRH antagonist (GnRHa). At first FSH dose, ewes treated with GnRH antagonist (n=12) showed a higher number of gonadotrophin-responsive follicles, 2-3mm, than control ewes (n=9, 13.5+/-3.8 versus 5.3+/-0.3, P<0.05). Administration of FSH increased the number of >or=4mm follicles at sponge removal in both groups (19.3+/-3.8, P<0.0005 for treated ewes and 12.7+/-5.4, P<0.01 for controls). Thereafter, a 25% of the GnRHa-treated sheep did not show oestrous behaviour whilst none control sheep failed (P=0.06). The preovulatory LH surge was detected in an 88.9% of control ewes and 66.7% of GnRHa-treated sheep. A 77.8% of control females showed ovulation with a mean of 9.6+/-0.9 CL and 3.3+/-0.7 viable embryos, while ewes treated with GnRHa and showing an LH surge exhibited a bimodal distribution of response; 50% showed no ovulatory response and 50% superovulated with a mean of 12.2+/-1.1 CL and 7.3+/-1.1 viable embryos. In conclusion, a single dose of GnRHa enhances the number of gonadotrophin-dependent follicles able to grow to preovulatory sizes in response to an FSH supply. However, LH secretion may be altered in some females, which can affect the preovulatory LH surge and/or can weak the terminal maturation of ovulatory follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号