首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporary modification of serine hydrolase activity with 4-nitrophenyl phenacyl and 4-nitrophenacyl methylphosphonates occurs with self-catalyzed intramolecular reactivation of chymotrypsin, trypsin, thrombin and plasmin  相似文献   

2.
Regulation of nuclear scaffold protease activity by calcium   总被引:1,自引:0,他引:1  
Recent investigations have disclosed protease activity which is intimately associated with the nuclear scaffold. This protease activity shows a marked selectivity for lamins A/C, and from them may produce the 46-kDa NTPase thought to participate in nucleocytoplasmic RNA transport. Preliminary characterizations suggested that the protease activity might require Ca2+. In this report, we present evidence showing that nuclear scaffold protease activity is stringently regulated by Ca2+ within the physiologic range. Further, calmodulin antagonists such as calmidazolium and chlorpromazine produce marked inhibition of the protease activity, suggesting modulation by calmodulin or calmodulin-like factors.  相似文献   

3.
We show that chymotrypsin-like, as well as trypsin-like, proteases are in granules isolated from cytolytic lymphocytes by the capacity of the granules to hydrolyze the peptide substrates Z-Phe-Leu-Phe-SBzl and Z-Ala-Gly-Arg-SBzl, respectively. We report protease inhibitors that can abrogate or delay granule-mediated cytolysis. Two mechanism-based isocoumarin serine protease inhibitors and Z-Gly-Leu-Phe-CH2Cl completely abrogated granule cytolysis. Lima bean and soybean trypsin inhibitors and chymostatin delayed but did not prevent this cytolysis. These data represent the first use of the powerful isocoumarin inhibitors as biological probes and indicate that lymphocyte serine proteases participate in the granule cytolytic process.  相似文献   

4.
Proteases, also referred to as peptidases, are the enzymes that catalyse the hydrolysis of peptide bonds in polipeptides. A variety of biological functions and processes depend on their activity. Regardless of the organism’s complexity, peptidases are essential at every stage of life of every individual cell, since all protein molecules produced must be proteolytically processed and eventually recycled. Protease inhibitors play a crucial role in the required strict and multilevel control of the activity of proteases involved in processes conditioning both the physiological and pathophysiological functioning of an organism, as well as in host-pathogen interactions. This review describes the regulation of activity of bacterial proteases produced by dangerous human pathogens, focusing on the Staphylococcus genus.  相似文献   

5.
Panning of a substrate phage library with an -lytic protease mutant showed that substrate phage display can be used to isolate sequences with improved protease sensitivity even for proteases of relatively broad specificity. Two panning experiments were performed with an engineered -lytic protease mutant known to have a preference for cleavage after His or Met residues. Both experiments led to the isolation of protease-sensitive phage containing linker sequences in which His and Met residues were enriched compared with the initial library. Despite the relatively hydrophobic substrate binding site of the enzyme, the predominant protease-sensitive sequence isolated from the second library panning had the sequence Asp-Ser-Thr-Met. Kinetic studies showed that this sequence was cleaved up to 4.5-fold faster than rationally designed positive controls. Protease-resistant phage particles were also selected and characterized, with the finding that Gly and Pro appeared frequently at the putative P4 positions, whereas Asp dominated the putative P1 position.  相似文献   

6.
Serine proteases are among the most important biological additives in various industries such as detergents, leather, animal feed and food. A serine protease gene, Fgapt4, from Fusarium graminearum 2697 was identified, cloned and expressed in Pichia pastoris. The optimal pH and temperature of FgAPT4 were 8.5 and 40°C, respectively. The relative activity was >30% even at 10°C. It had a wide range of pH stability (4.0–12.0) and detergent compatibility. To improve the catalytic activity, a strategy combining molecular docking and evolutionary analysis was adopted. Twelve amino acid residue sites and three loops (A, B and C) were selected as potential hot spots that might play critical roles in the enzyme's functional properties. Twenty-eight mutants targeting changes in individual sites or loops were designed, and mutations with good performance were combined. The best mutant was FgAPT4-M3 (Q70N/D142S/A143S/loop C). The specific activity and catalytic efficiency of FgAPT4-M3 increased by 1.6 (1008.5 vs. 385.9 U/mg) and 2.2-fold (3565.1 vs. 1106.3/s/mM), respectively. Computational analyses showed that the greater flexibility of the substrate pocket may be responsible for the increased catalytic activity. In addition, its application in detergents indicated that FgAPT4-M3 has great potential in washing.  相似文献   

7.
Seprase: an overview of an important matrix serine protease   总被引:3,自引:0,他引:3  
Seprase or Fibroblast Activation Protein (FAP) is an integral membrane serine peptidase, which has been shown to have gelatinase activity. Seprase has a dual function in tumour progression. The proteolytic activity of Seprase has been shown to promote cell invasiveness towards the ECM and also to support tumour growth and proliferation. Seprase appears to act as a proteolytically active 170-kDa dimer, consisting of two 97-kDa subunits. It is a member of the group type II integral serine proteases, which includes dipeptidyl peptidase IV (DPPIV/CD26) and related type II transmembrane prolyl serine peptidases, which exert their mechanisms of action on the cell surface. DPPIV and Seprase exhibit multiple functions due to their abilities to form complexes with each other and to interact with other membrane-associated molecules. Localisation of these protease complexes at cell surface protrusions, called invadopodia, may have a prominent role in processing soluble factors and in the degradation of extracellular matrix components that are essential to the cellular migration and matrix invasion that occur during tumour invasion, metastasis and angiogenesis.  相似文献   

8.
The regulation of serine transhydroxymethylase (EC 2.1.2.1.; l-serine:tetrahydrofolic-5,10-hydroxymethyltransferase) has been investigated in Salmonella typhimurium LT2. Our results indicate that limitation of a methionine auxotroph for methionine does not cause derepression of this enzyme as reported for Escherichia coli. However, a sixfold decrease in specific activity was observed when S. typhimurium cells were grown in glucose minimal medium supplemented with serine, glycine, methionine, adenine, guanine, and thymine. None of these compounds added to the growth medium individually produced more than a 42% reduction of wild-type enzyme activity. This enhanced repression by the combination of compounds suggests a form of cumulative repression of this enzyme. Growth of serine and thymine auxotrophs, with the respective requirement of each limiting, did not result in increased enzyme activity. However, growth of a purine auxotroph with a limiting amount of either guanine or inosine resulted in a five- to sevenfold increase in enzyme activity. A second condition causing significant derepression (fourfold increase) above the levels observed with cells grown in minimal medium was the addition of 0.5 mug of trimethoprim per ml, an inhibitor of the dihydrofolate reductase activity. (A partial report on this work was presented at 1974 meeting of the American Society for Microbiology.)  相似文献   

9.
Sarcocystis neurona merozoites were examined for their ability to invade and divide in bovine turbinate (BT) cell cultures after treatment with cysteine (iodoacetamide), aspartic (pepstatin A), metallo-(1,10-phenanthroline and ethylene glycol-bis(aminoethylether)-tetraacetic acid [EGTA]), or serine (4-[2-aminoethyl]-benzenesulfonyl fluoride hydrochloride [AEBSF], phenylmethane sulphonyl fluoride [PMSF], and tosyl lysyl chloramethyl ketone [TLCK]) protease inhibitors. Significant (P < 0.01) inhibition of serine protease activity by PMSF and TLCK led to a reduction of 86 and 78% in merozoites produced in BT cell cultures, respectively, whereas AEBSF (1 mM) led to a 68% reduction in merozoites produced in BT cell cultures and a reduction of 84 and 92% at higher AEBSF concentrations (2 and 3 mM, respectively). Pepstatin A and iodoacetamide failed to cause any inhibition in merozoite production, whereas 1,10-phenanthroline and EGTA caused slight, but not significant, inhibition at 6 and 17%, respectively. In zymograms, 2 bands of protease activity between 65- and 70-kDa molecular weight were seen. The protease activity was inhibited by AEBSF but not by E-64 (cysteine protease inhibitor), EGTA, iodoacetamide, or pepstatin A. In native zymograms, the protease activity was highest between a pH range of 8 and 10. These data suggest that merozoites of S. neurona have serine protease activity with a relative molecular weight range between 65 and 70 kDa and optimal pH range between 8 and 10, which is essential for host cell entry at least in vitro. The protease activity described here could be a potential target for chemotherapy development.  相似文献   

10.
A previously undiscovered intracellular serine protease activity, which we have called intracellular serine protease-4, was identified in extracts of stationary Bacillus subtilis cells, purified 260 fold from the cytoplasmic fraction, and characterized. The new protease was stable and active in the absence of Ca2+ ions and hydrolyzed azocasein and the chromogenic substrate carbobenzoxy-carbonyl-alanyl-alanyl-leucyl-p-nitroanilide, but not azocollagen or a variety of other chromogenic substrates. The protease was strongly inhibited by phenylmethylsulfonylfluoride, chymostatin and antipain, but not by chelators, sulfhydryl-reactive agents or trypsin inhibitors. Its activity was stimulated by Ca2+ ions and gramicidin S; its pH and temperature optima were 9.0 and 37°C, respectively. Although intracellular serine protease-4 was immunochemically distinct from intracellular serine protease-1, it was absent from a mutant in which the gene encoding the latter was disrupted.  相似文献   

11.
RG13 is an engineered allosteric beta-lactamase (BLA) for which maltose is a positive effector. RG13 is a hybrid protein between TEM1 BLA and maltose-binding protein (MBP). Maltose binding to MBP is known to convert the open form of the protein to the closed form through conformational changes about the hinge region. We have constructed and genetically selected several variants of RG13 modified in the hinge region of the MBP domain and explored their effect on beta-lactam hydrolysis, maltose affinity and maltose-induced switching. Hinge mutations that increased maltose affinity the most (and thus presumably close the apo-MBP domain the most) also abrogated switching the most. We provide evidence for a model of RG13 switching in which there exists a threshold conformation between the open to closed form of the MBP domain that divides states that catalyze beta-lactam hydrolysis with different relative rates of acylation and deacylation.  相似文献   

12.
Although mite major group 1 allergens, Der p 1 and Der f 1, were first isolated as cysteine proteases, some studies reported that natural Der p 1 exhibits mixed cysteine and serine protease activity. Clarifying whether the serine protease activity originates from Der p 1 or is due to contamination is important for distinguishing between the pathogenic proteolytic activities of group 1 allergens and mite-derived serine proteases. Recombinant mite group 1 allergens would be useful tool for addressing this issue, because they are completely free from contamination by mite serine proteases. Recombinant Der p 1 and Der f 1, and highly purified natural forms exhibited only cysteine protease activity. However, commercially available natural forms exhibited both activities, but the two activities were eluted into different fractions in size-exclusion column chromatography. The substrate specificity associated with the serine protease activity was similar to that of Der f 3. These results indicate that the serine protease activity does not originate from group 1 allergens.  相似文献   

13.
The ADAMs (a disintegrin and metalloprotease) are a family of multidomain proteins that are believed to play key roles in cell-cell and cell-matrix interactions. We have shown recently that human ADAM 12-S (meltrin alpha) is an active metalloprotease. It is synthesized as a zymogen, with the prodomain maintaining the protease in a latent form. We now provide evidence that the latency mechanism of ADAM 12 can be explained by the cysteine switch model, in which coordination of Zn2+ in the active site of the catalytic domain by a cysteine residue in the prodomain is critical for inhibition of the protease. Replacing Cys179 with other amino acids results in an ADAM 12 proform that is proteolytically active, but latency can be restored by placing cysteine at other positions in the propeptide. None of the amino acids adjacent to the crucial cysteine residue is essential for blocking activity of the protease domain. In addition to its latency function, the prodomain is required for exit of ADAM 12 protease from the endoplasmic reticulum. Tissue inhibitor of metalloprotease-1, -2, and -3 were not found to block proteolytic activity of ADAM 12, hence a physiological inhibitor of ADAM 12 protease in the extracellular environment remains to be identified.  相似文献   

14.
Rarobacter faecitabidus protease I, a yeast-lytic serine protease, was characterized in order to elucidate the mechanism of lysis of yeast cells by this enzyme. The N-terminal amino acid sequence of the enzyme was found to be homologous to those of Lysobacter enzymogenes alpha-lytic protease and Streptomyces griseus proteases A and B around the catalytic His residue, showing that it is a mammalian type serine protease. In a study of its substrate specificity, it preferentially hydrolyzed the ester of alanine among amino acid p-nitrophenylesters. It also efficiently hydrolyzed succinyl Ala-Pro-Ala p-nitroanilide, the specific synthetic substrate for pancreatic elastase. With oxidized insulin B-chain, it hydrolyzed almost exclusively the peptide bond between valine 18 and cysteic acid 19 in the early step of the reaction, and thereafter it partially hydrolyzed Val12-Glu13, Ala14-Leu15, and Leu15-Tyr16. These results indicate that Rarobacter protease I is elastase-like in its substrate specificity, preferentially hydrolyzing the peptide bond of aliphatic amino acids. Its affinity for yeast cells was also investigated, and while Rarobacter protease I was adsorbed by yeast cells, pancreatic elastase was not. This difference was thought to account for the failure of pancreatic elastase to lyse yeast cells, even though its specificity is similar to that of the yeast-lytic enzyme. Rarobacter protease I was adsorbed by a mannose-agarose column and specifically eluted from the column with a buffer containing D-mannose or D-glucose. These monosaccharides also inhibited its yeast-lytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Neuroserpin, an axonally secreted serine protease inhibitor.   总被引:5,自引:0,他引:5       下载免费PDF全文
We have identified and chromatographically purified an axonally secreted glycoprotein of CNS and PNS neurons. Several peptides derived from it were microsequenced. Based on these sequences, a fragment of the corresponding cDNA was amplified and used as a probe to isolate a full length cDNA from a chicken brain cDNA library. Because the deduced amino acid sequence qualified the protein as a novel member of the serpin family of serine protease inhibitors, we called it neuroserpin. Analysis of the primary structural features further characterized neuroserpin as a heparin-independent, functional inhibitor of a trypsin-like serine protease. In situ hybridization revealed a predominantly neuronal expression during the late stages of neurogenesis and in the adult brain in regions which exhibit synaptic plasticity. Thus, neuroserpin might function as an axonally secreted regulator of the local extracellular proteolysis involved in the reorganization of the synaptic connectivity during development and synapse plasticity in the adult.  相似文献   

16.
17.
A fraction separated from rat submandibular gland homogenates was found to contain a potent vasoconstrictor when tested on isolated rabbit aortic rings. The vasoconstrictor was purified by a series of chromatographic steps. The purified compound (2.77 x 10(-9) M) induced 40% of the maximum contractile response to 60 mM KCl. Constriction was slow in onset, long-lasting, rinse-resistant, and unchanged by de-endothelialization; in addition, it was dose-related and inhibited by both EGTA and verapamil, but it was not affected by DUP753, an angiotensin II receptor antagonist. The compound was found to be a protein having a pI of 7.36 and a molecular weight of approximately 29,000 and exhibiting partial immunologic identity to rat glandular kallikrein and rat tonin. After 2-mercaptoethanol treatment, it separated into heavy (approximately 19,900) and light (approximately 10,700) chains having amino-terminal sequences of AY(X)HNNDLMLL and VVGGYN(X)ETNSQ, respectively. We found that they correspond to the amino-terminal and internal sequence of a previously unidentified kallikrein-like serine protease whose mRNA, named S3, has been found in the rat submandibular gland and prostate. The vasoconstrictor is able to hydrolyze t-butoxycarbonyl-valine-proline-arginine-methylcoumarin amide (a thrombin substrate), although its Kcat/Km was only 0.02% that of rat thrombin. Both vasoconstrictor and enzymatic activity on t-butoxycarbonyl-valine-proline-arginine-methylcoumarin amide were completely suppressed by amidinophenylmethylsulfonyl fluoride and soybean trypsin inhibitor; however, they were unaffected by hirudin, a thrombin inhibitor. At pH 6.5, it released angiotensin II when incubated with sheep angiotensinogen, although it had approximately one-tenth the activity of tonin. The submandibular enzymatic vasoconstrictor is a kallikrein-like enzyme, having some properties of both tonin and thrombin. It directly contracts vascular smooth muscle, acting via a mechanism that requires intact enzymatic activity.  相似文献   

18.
Activity-based probes are small molecules that covalently bind to the active site of a protease in an activity-dependent manner. We synthesized and characterized two fluorescent activity-based probes that target serine proteases with trypsin-like or elastase-like activity. We assessed the selectivity and potency of these probes against recombinant enzymes and demonstrated that while they are efficacious at labeling active proteases in complex protein mixtures in vitro, they are less valuable for in vivo studies. We used these probes to evaluate serine protease activity in two mouse models of acute inflammation, including pancreatitis and colitis. As anticipated, the activity of trypsin-like proteases was increased during pancreatitis. Levels of elastase-like proteases were low in pancreatic lysates and colonic luminal fluids, whether healthy or inflamed. Exogenously added recombinant neutrophil elastase was inhibited upon incubation with these samples, an effect that was augmented in inflamed samples compared to controls. These data suggest that endogenous inhibitors and elastase-degrading proteases are upregulated during inflammation.  相似文献   

19.
One potentially important mechanism for regulating class Ia phosphoinositide 3-kinase (PI 3-kinase) activity is autophosphorylation of the p85 alpha adapter subunit on Ser608 by the intrinsic protein kinase activity of the p110 catalytic subunit, as this downregulates the lipid kinase activity in vitro. Here we investigate whether this phosphorylation can occur in vivo. We find that p110 alpha phosphorylates p85 alpha Ser608 in vivo with significant stoichiometry. However, p110 beta is far less efficient at phosphorylating p85 alpha Ser608, identifying a potential difference in the mechanisms by which these two isoforms are regulated. The p85 alpha Ser608 phosphorylation was increased by treatment with insulin, platelet-derived growth factor, and the phosphatase inhibitor okadaic acid. The functional effects of this phosphorylation are highlighted by mutation of Ser608, which results in reduced lipid kinase activity and reduced association of the p110 alpha catalytic subunit with p85 alpha. The importance of this phosphorylation was further highlighted by the finding that autophosphorylation on Ser608 was impaired, while lipid kinase activity was increased, in a p85 alpha mutant recently discovered in human tumors. These results provide the first evidence that phosphorylation of Ser608 plays a role as a shutoff switch in growth factor signaling and contributes to the differences in functional properties of different PI 3-kinase isoforms in vivo.  相似文献   

20.
The serine protease HtrA2/Omi is released from the mitochondria into the cytosol following apoptosis stimuli, leading to the programmed cell death in caspase-dependent and -independent manners. The function of HtrA2/Omi closely relates to its protease activity, which is required for cleavage of its substrate such as the members of the X-linked inhibitor of apoptotic protein family. However, the regulation of HtrA2/Omi by signaling molecule has not been documented. Here we report that serine/threonine kinases Akt1 and Akt2 phosphorylate mitochondria-released HtrA2/Omi on serine 212 in vivo and in vitro, which results in attenuation of its serine protease activity and pro-apoptotic function. Abolishing HtrA2/Omi phosphorylation by Akt through mutation of serine 212 to alanine (HtrA2/Omi-S212A) retains its serine protease activity and induces more apoptosis as compared with wild-type HtrA2/Omi. Conversely, HtrA2/Omi-S212D, a mutant mimicking phosphorylation, lost the protease activity and failed to induce the programmed cell death. Furthermore, the phosphorylated HtrA2/Omi fails to cleave X-linked inhibitor of apoptotic protein without interfering with their complex formation. In addition, Akt inhibits the release of HtrA2/Omi from the mitochondria into the cytoplasm in response to cisplatin treatment. These data reveal for the first time that HtrA2/Omi is directly regulated by Akt and provide a mechanism by which Akt induces cell survival at post-mitochondrial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号