首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequencies of the AB0 and RH blood group alleles and heterozygosity indices were determined for the populations of two large industrial cities of Gorlovka and Mariupol. In the population of Gorlovka the gene frequencies were as follows: AB0*0 = 0.576,AB0*A = 0.266, AB0*B = 0.158, and RH*D = 0.592, in Mariupol the frequencies were AB0*0 = 0.584, AB0*A = 0.265, AB0*B = 0.151, and RH*D = 0.604. In Gorlovka the heterozygosity indices in respect to the AB0 andRH alleles were 0.572 and 0.483, respectively; in Mariupol, 0.566 and 0.478, respectively. There were no statistically significant differences between the two populations in respect to the genetic markers analyzed. However, the heterozygosity values obtained were more similar to the corresponding estimates for some populations of Russia, than for the total population of the Ukraine.  相似文献   

2.
The analysis of a sample of 1632 individuals from patients of the Nishtar Teaching Hospital, Multan, suggests that different ethnic groups (Araeen, Mughals, Syed, Jat, Rajputs, Baloch and Pathan) are not significantly different from another with regard to the distribution of RH blood group alleles (RH*d around 0.30). The distributions of the AB0 blood group alleles suggest that different ethnic groups are not significantly different from the average alele frequencies (AB0*A = 0.23, AB0*B = 0.33, AB0*0 = 0.47) except for the Pathan ethnic group (AB0*A = 0.35, AB0*B = 0.47, AB0*0 = 0.27). The populations of different geographic areas are not significantly different from the average allele frequencies, except for the southern district of Rahim Yar Khan (AB0*A = 0.12) and the northern district of Sahiwal (AB0*A = 0.19). The populations of Sahiwal (RH*d = 0.35) and Muzaffargarh (RH*d = 0.36) yield significantly different allele frequencies at the RH locus. The interpopulation differences can be explained by the geographic distance. There is a significant difference in the frequencies of the AB0 alleles between rural and urban populations, suggesting that rural populations maintain their isolation from urban populations. Rural and urban populations are not significantly different from one another concerning the allele frequencies at the RH locus.  相似文献   

3.
Population genetic data on Gagauzes from Moldavia are reported here for the first time. AB0 and Rhesus blood groups, serum protein group (HP, TF, GC) and the red cell enzyme polymorphism PGM1 were determined in 190 Gagauzes. In addition to this the ability to taste PTC was tested. The following allele frequencies were found: AB0*0 = 0.5241, AB0*A = 0.3279, AB0*B = 0.1480; RH*D = 0.6083, RH*d = 0.3917; HP*1 = 0.3544, HP*2 = 0.6456; TF*C1 = 0.7472, TF*C2 = 0.1770, TF*C3 = 0.0730, TF*B = 0.0028; GC*1F = 0.1025, GC*1S = 0.5932, GC*2 = 0.3043; PGM*1+ = 0.5932; PGM*1- = 0.1000, PGM*2+ = 0.2607, PGM*2- = 0.1107. The frequency of the PTC*T allele was found to be 0.5298. These frequencies and genetic distance analyses show that the gene pool of the Gagauzes is similar to that of neighbouring southeastern European populations.  相似文献   

4.
秦川牛和中国荷斯坦牛POU1F1基因多态性研究   总被引:12,自引:1,他引:12  
严林俊  刘波  房兴堂  陈宏  张润锋  鲍斌  张海军 《遗传》2006,28(11):1371-1375
采用PCR-RFLP技术研究了秦川牛(QQ)和中国荷斯坦牛(HC)共计218头个体POU1F1基因的多态性。结果表明: 秦川牛及中国荷斯坦牛群体POU1F1-HinfⅠ基因座的451 bp 的PCR产物经限制性酶HinfⅠ消化后表现多态, 其等位基因A/B频率分别为0.232/0.768、0.132/0.868; 两个群体AA、AB和BB 3种基因型的频率分别为0.030/0.403/0.567、0.007/0.251/0.742。在该基因座秦川牛群体处于Hardy-Weinberg平衡状态, 中国荷斯坦牛群体处于不平衡状态。它们在该基因座的杂合度、有效等位基因数、Shannon信息熵、多态信息含量分别为0.356/1.553/0.541/0.292、0.229/1.297/0.390/0.203; 秦川牛群体的位点杂合度、有效等位基因数、Shannon信息熵、多态信息含量均大于中国荷斯坦牛群体。  相似文献   

5.
The frequencies of 33 alleles of 12 loci of immunological and biochemical gene markers (AB0, RH, HP, GC, TF, PI, C′3, ACP1, GLO1, PGM1, ESD, and 6-PGD) have been estimated in the indigenous Russian and Ukrainian populations of Belgorod oblast. Differences of the Belgorod population from other populations of Russia with respect to the genetic structure have been determined. It has been found that the frequency distributions of all alleles studied in the Belgorod population are similar to those typical of the genetic structure of Caucasoid populations.  相似文献   

6.
Population genetic data on Gagauzes from Moldova are reported for the first time. Blood groups AB0 and Rh and biochemical markers of genes HP, TF, GC, and PGM1 were determined in 190 Gagauzes. The following allelic frequencies were determined: AB0*0, 0.5241; AB0*A, 0.3279; RH*d, 0.4571; HP*1, 0.3544; TF*C1, 0.7472; TF*C2, 0.1770; TFC3, 0.0730; TF*B, 0.0028; GC*1F, 0.1025; GC*1S, 0.5932; GC*2, 0.3043; PGM1*1+, 0.5286; PGM*1-, 0.1000; PGM1*2+, 0.2607; and PGM1*2-, 0.1107. The data obtained indicate that the gene pool of Gagauzes is similar to those of neighboring southeastern European populations.  相似文献   

7.
Five polymorphisms of the apolipoprotein B gene in healthy Bulgarians   总被引:1,自引:0,他引:1  
Five APOB polymorphisms (I/D in the promoter region, XbaI [codon 24881, MspI [codon 3611], EcoRI [codon 41541, and 3' VNTRs) were studied in a population sample of 147 healthy normolipemic Bulgarians. For all biallelic loci, the observed genotype distributions do not deviate from Hardy-Weinberg equilibrium. In Bulgaria the insertion allele and the MspI+ allele of APOB presented the highest allelic frequencies (0.793 +/- 0.024 and 0.959 +/- 0.012, respectively) among the European population groups studied so far. The allele frequencies of the other two biallelic polymorphisms (XbaI and EcoRI) found in the Bulgarian population are similar to those previously described in other Caucasian populations. Analysis of the 3' VNTR polymorphism revealed 11 different alleles. Like studies in other Caucasian populations, this study found bimodal allele-size distribution and a high level of heterozygosity. The frequency of allele *31 (0.162 +/- 0.022) among Bulgarians is higher than that of any other European population group studied so far. Genetic distances between Bulgarians and each of six populations from southeastern Europe for which 3' VNTR allele frequencies are available showed an increase in the order: Albanians相似文献   

8.
We report results of typing two population samples, Israeli Arab Moslems and Arab Druze, for seven serum protein genetic variants. Data are presented in comparison with results for the same markers in a sample of Jordanian Arabs. In Israeli Moslems gene frequencies for BF (n = 169) were BF*S = 0.6361, BF*F = 0.3343, BF*S07 = 0.0296, and BF*1 = 0, and for TF (n = 90) the gene frequencies were: TF*C1 = 0.7167, TF*C2 = 0.2611, and TF*C3 = 0.0222. Allele frequencies for AHSG in Israeli Moslems (n = 155) and Druze (n = 192) were AHSG*1 = 0.9129 and 0.8750 and AHSG*2 = 0.0806 and 0.1250, respectively. Gene frequencies for PLG in Moslems (n = 149) and Druze (n = 190) were PLG*A = 0.4597 and 0.5288 and PLG*B = 0.5101 and 0.4188, respectively. The typing of Israeli Arab Druze (n = 194) for F13B resulted in F13B*1 = 0.8454, F13B*2 = 0.0387, F13B*3 = 0.0979, and F13B*4 = 0.0180. Results on the same population for PI (n = 192) were PI*M1 = 0.7839, PI*M2 = 0.1276, PI*M3 = 0.0781, PI*M4 = 0.0026, and PI*M5 = 0.0026. Observed rare alleles in various systems indicate gene flow from Europe, Africa, and Asia into the Middle East. The results on Arab populations were considered in relation to available population data in the three adjacent continents. The emerging gene frequency profile for Arabs seems to fit with the central geographic and climatic position of the Middle East.  相似文献   

9.
The allele frequencies of LDH-A* locus were studied in the population of Siberian grayling from the Kozhym River (Pechora basin) and in the population of European grayling from Pechora, Mezen', and Vym' rivers (Northern Dvina basin). In samples of both species (n = 134), three LDH-A phenotypes have been identified in total, which proved to be under the control of two alleles: LDH-A*100 and LDH-A*50. The alternative alleles of LDH-A* locus were identified in the populations of Siberian grayling from Kozhym River and in the population of European grayling from the same river and other Pechora tributaries, namely, LDH-A*100 and LDH-A*50 in the Siberian and the European grayling, respectively. However, in the European grayling populations from the Mezen' and Vym' rivers, both alleles occur at the frequencies of the rare LDH-A*100 allele of 0.143 and 0.222, respectively. According to the published data, the frequency of LDH-A*100 allele increases in the European grayling populations of northwestern (Finland) and southern (France) rivers, reaching 0.872 and 1.000 in Rhone and Loire, respectively, i.e., the values characteristic of the Siberian grayling populations.  相似文献   

10.
The geographic distribution of the frequencies of genes related to the immunological and biochemical polymorphism was studied in the Maris, who are the indigenous population of the Marii El Republic. Data on the frequencies of 33 alleles of 10 loci (ABO, TF, GC, PI, HP, AHS, F13B, ACP1, PGM1, and GLO1) in five raions (districts) of Marii El were obtained. Computer interpolation maps were constructed for all alleles. The maps allows to predict the distribution of the alleles throughout Marii El. A map of the reliability of the cartographic prediction was drawn. For the first time, the reliability of predicted gene frequencies were taken into account in constructing and interpreting the maps of gene frequencies. For the entire set of the studied genes, parameters of heterozygosity (HS) and gene diversity (GST) were estimated. Cartographic correlation analysis was performed to reveal the relationship between gene frequencies and geographic coordinates. It was found that 42% of the studied genes predominantly correlated with latitude and 9% with longitude. It was assumed that the genetic structure of Mari populations had been mainly determined by latitude-related factors. A map of Nei's genetic distances between the overall Mari gene pool and the local populations revealed a central core, which was close to the "average Mari" gene pool, and a periphery, which was genetically distant from it. Suggestions on the microevolution of the Mari gene pool were advanced. Maps of the genes with the most characteristic genetic relief (ABO*B, ACP*A, TF*D, GC*1F, PI*M2, HP*1F, and F13B*3) are shown. These maps exhibit a high correlation with the maps of principal components.  相似文献   

11.
CYP2D6 is a member of cytochrome P450 enzymes that metabolise over 25% of commonly used drugs. Genetic polymorphisms can cause insufficient drug efficacy at usually administered doses or can be the cause of adverse drug reaction. CYP2D6 genotyping can be used to predict CYP2D6 phenotype and thereby explain some abnormalities in drug response and thus optimize pharmacotherapy. The aim of this study was to investigate the frequency of functionally important variant alleles of the CYP2D6 gene throughout the Czech population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes. The DNA of 223 unrelated, healthy volunteers was analysed to detect the presence of CYP2D6*6, *5, *4, *3 and gene duplication. The variant allele frequencies in our population were 0.22%, 3.14%, 22.87%, 1.12% and 3.14% for CYP2D6*6, CYP2D6*5, CYP2D6*4, CYP2D6*3 and CYP2D6*MxN, respectively. Fifteen subjects carried two variant alleles leading to predicted poor type of metabolism, 84 subjects were heterozygous extensive metabolizers (het-EM). The full-text contains detailed comparison with European white populations. The distribution of variant alleles complies with the Hardy-Weinberg equilibrium. The frequencies of functional variant alleles of CYP2D6 in Czech population are in concordance with other Caucasian populations.  相似文献   

12.
Apolipoprotein CII genotypes were determined in Brahmins, Banias, Jat Sikhs, Khatris, Ramgarhia, Ramdasia and Scheduled Castes of Punjab, North India (n = 930). The Apo CII exhibits three common polymorphic alleles CII*1, CII*2 and CII*3 with pooled frequencies 0.883, 0.114 and 0.003, respectively. CII*3 was absent in Brahmins. Distribution of Apo CII isoforms highlights a considerable variation among different ethnic groups across the world. The average heterozygosity of the Punjabi populations was 0.208. The gene diversity among these population groups was less than 0.1%.  相似文献   

13.
Individual variability in xenobiotic metabolism has been associated with susceptibility to developing complex diseases. Genes involved in xenobiotic metabolism have been evaluated in association studies; the difficulty of obtaining accurate gene frequencies in mixed populations makes interpretation of the results difficult. We sought to estimate population parameters for the cytochrome P450 and glutathione S-transferase gene families, thus contributing to studies using these genes as markers. We describe the frequencies of six genes (CYP1A1, CYP2D6, CYP2E1, GSTM1, GSTT1, and GSTP1) and estimate population parameters in 115 Euro-descendants and 196 Afro-descendants from Curitiba, South of Brazil. PCR-based methods were used for genotyping, and statistical analysis were performed by AMOVA with ARLEQUIN software. The mutant allele frequencies in the Afro-descendants and Euro-descendants, respectively, were: CYP1A1*2A = 30.1% and 15.2%; CYP2D6*4 = 14.5% and 21.5%; CYP2E1*5B = 7.9% and 5%; GSTP1*B = 37.8% and 28.3%. The null genotype frequencies were: GSTM1*0 = 36.8% and 46.1%; GSTT1*0 = 24.2% and 17.4%.  相似文献   

14.
Interethnic differences in the allele frequencies of CYP2D6, NAT2, GSTM1 and GSTT1 deletions have been documented for Caucasians, Asians, and Africans population. On the other hand, data on Amerindians are scanty and limited to a few populations from southern areas of South America. In this report we analyze the frequencies of 11 allele variants of CYP2D6 and 4 allele variants of NAT2 genes, and the frequency of GSTM1 and GSTT1 homozygous deleted genotypes in a sample of 90 donors representing 8 Native American populations from Argentina and Paraguay, identified as Amerindians on the basis of their geographic location, genealogical data, mitochondrial- and Y-chromosome DNA markers. For CYP2D6, 88.6% of the total allele frequency corresponded to *1, *2, *4 and *10 variants. Average frequencies for NAT2 *4, *5, *6 and *7 alleles were 51.2%, 25%, 6.1%, and 20.1%, respectively. GSTM1 deletion ranged from 20% to 66%, while GSTT1 deletion was present in four populations in less than 50%. We assume that CYP2D6 *2, *4, *10, *14; NAT2 *5, *7 alleles and GSTM1 and GSTT1 *0/*0 genotypes are founder variants brought to America by the first Asian settlers.  相似文献   

15.
Frequency and heterozygosity indices of AB0 and Rh gene systems in the population of Donetsk Province were calculated. Uneven distribution of the genes was found and heterozygosity indices of the population were 0.554-0.573 for AB0 and 0.410-0.499 for Rh. Heterozygosity in this population was higher than average heterozygosity in total population of Ukraine as a result of intensive migrations and prevalence of heterolocal marriages over homolocal ones.  相似文献   

16.
The frequencies of the kappa-casein gene (CSN3) alleles and genotypes have been determined in five Russian cattle breeds (Bestuzhev, Kalmyk, Russian Black Pied, Yaroslavl, and Yakut breeds) by means of PCR-RFLP analysis using two independent restriction nucleases (HinfI and TaqI) and by allele-specific PCR. Typing alleles A and B of CSN3 is of practical importance, because allele B is correlated with commercially valuable parameters of milk productivity (protein content and milk yield) and improves the cheese yielding capacity. The frequencies of the B allele of CSN3 in the breeds studied vary from 0.16 to 0.50; and those of the AB and BB genotypes, from 0.27 to 0.60 and from 0.02 to 0.23, respectively. The Yaroslavl breed had the highest frequencies of CSN3 allele B and genotype BB (0.50 and 0.23, respectively). The frequencies of the B allele and BB genotype in other breeds studied varied from 0.25 to 0.32 and from 0.03 to 0.09, respectively. In none of the breeds studied have the observed and expected heterozygosities been found to differ from each other significantly. However, the observed genotype distributions significantly differ from the expected one in some herds (in most such cases, an excess of heterozygotes is observed). Two herds of the Yaroslavl breed dramatically differ from each other in the heterozygosity level: a deficit (D = -0.14) and an excess (D = 0.20) of heterozygotes have been observed at the Mikhailovskoe and Gorshikha farms, respectively. In general, however, the heterozygosity of the Yaroslavl breed corresponds to the expected level (D = 0.04). Analysis of breeds for homogeneity with the use of Kulback's test has shown that all cattle breeds studied are heterogeneous, the CSN3 diversity within breeds being higher than that among different breeds, which is confirmed by low Fst values (0.0025-0.0431). Thus, a DNA marker based on CSN3 gene polymorphism is extremely important for breeding practice as a marker of milk quality; however, it is inapplicable to marking differences between breeds or phylogenetic relationships between cattle breeds because of the high diversity with respect to this locus within breeds.  相似文献   

17.
C8 inheritance patterns in 364 mother-child pairs formed the basis for evaluation of the existence of silent alleles (null alleles) in the genes determining the two known polymorphic C8 systems. While evidence for such alleles was not found in C8A (alpha-gamma complex), two observations of null allele segregation in C8B (beta chain) indicate a C8BQ*0 allele frequency of about 0.07. Two population samples comprising 150 Lappish and 1,264 non-Lappish Norwegians were examined for phenotype distributions in C8A and C8B. The phenotype distributions were mainly in accordance with the expected Hardy-Weinberg distribution. The results for C8A indicated simple, codominant inheritance of two frequent and several rare alleles. Allele frequencies were similar in the two populations. The C8A B gene frequency in Norwegians was significantly lower than that in FRG and higher than that in Negroes. C8B allele frequencies were also calculated from gene counts in the population material, but with due corrections for the C8BQ*0 frequency observed in the mother-child material.  相似文献   

18.
四川彝族和新疆维族HLA-B位点基因多态性分析   总被引:4,自引:0,他引:4  
应用PCR-SSP(Polymerase Chain Reaction-Sequence Specific Primer) 方法对无亲缘关系的106位四川彝族样品和110位新疆维族样品进行HLA-B基因分型。在彝族样品中共检出20个等位基因,其中高频率的等位基因为B*40(0.2028)、B*15(0.1604)、B*51(0.1274),低频率的等位基因为B*47 (0.0189)、B*27(0.0142)、B*44(0.0142)、B*18(0.0094)和B*78(0.0047)。在维族样品中共检出27个等位基因,其中高频率的等位基因为B*35 (0.1136)和B*51(0.1136),低频率的等位基因为B*41(0.0045)、B*56(0.0045)和B*78(0.0091)。经χ2检验,两个民族群体的基因型分布均符合Hardy-Weinberg平衡。经遗传分析,四川彝族群体HLA-B基因座杂合度(H)、个体识别率(DP)和非父排除率(EP)分别为0.8977、0.9661和0.8009;维族群体的H、DP和EP分别为0.9372、0.9857和0.8732。本研究获得了四川彝族和新疆维族HL A-B基因座基因频率数据,为临床器官移植配型、人类学、法医学及疾病关联性研究提供了重要的群体遗传学资料。  相似文献   

19.
Two new alleles (A1 B*3 and A1 B*4) of human plasma alpha 1 B-glycoprotein (alpha 1 B) were reported. alpha 1 B phenotyping was done by using either a simple method of two-dimensional (2-D) agarose gel-horizontal polyacrylamide gel electrophoresis (PAGE) followed by protein staining or by one-dimensional horizontal PAGE and immunoblotting. Seven different alpha 1 B phenotypes (1-1, 1-2, 1-3, 1-4, 2-2, 2-3 and 3-3) were observed; phenotypes 1-3 and 1-4 were differentiated from each other only by the 2-D method. The respective frequencies Af A1 B*1, A1 B*2, A1 B*3 and A1 B*4 alleles in the studied populations were estimated as follows: American Blacks (New York) 0.732, 0.204, 0.064, 0; American Whites (New York) 0.947, 0.053; Czechs (M?lník) 0.964, 0.034, 0, 0.002; Slovaks (Bratislava and Trencin) 0.977, 0.023, 0, 0. The population of American Blacks showed a much higher degree of alpha 1 B polymorphism (polymorphism information content = 0.37) than the Caucasian populations that have been studied.  相似文献   

20.
Polymorphism of the BoLA-DRB3 gene was studied with the use of the PCR-RFLP technique in three cattle breeds (Mongolian, Kalmyk, and Yakut) representing the Bos taurus turano-mongolicus group. 35 BoLA-DRB3.2 alleles were detected in the Mongolian breed and 34 alleles in the Kalmyk breed. The frequencies of alleles in both populations are distributed rather evenly: the frequencies of the most widely represented alleles (*18, *20, and *28) in the Mongolian cattle varied from 7.75 to 8.45%. The most frequent alleles in the Kalmyk cattle were *28 (14.52%), *24 (7.26%), and *12 (6.45%). Only five alleles were identified in the Yakut cattle breed. The prevailing allele was *29 (77.3%); a relatively frequent allele was *1 (13.1%), and the remaining three alleles constituted only 9.6%. Such a low level of diversity of BoLA-DRB3 gene alleles was not observed earlier in any other cattle breed. The Mongolian and Kalmyk breeds showed a wide diversity of BoLA-DRB3 genotypes (56 and 51 genotypes, respectively) and a high level of expected heterozygosity (H e = 0.953 and 0.946, respectively). Both breeds had a deficiency of heterozygotes (Mongolian cattle: H o = 0.775, D = −0.187; Kalmyk cattle: H o = 0.708, D = −0.252). A low level of genotypic diversity for the BoLA-DRB3 locus (only seven genotypes; the frequency for the genotype *29/*29 is 71.4%) and a very low level of observed heterozygosity (H o = 0.12) were revealed in the Yakut breed. BoLA-DRB3.2 alleles associated with resistance to persistent lymphocytosis caused by the bovine leukemia virus (total frequencies 15.49 and 24.19%) and to various forms of mastitis (total frequencies 12.68 and 20.96%, respectively) were identified in the Mongolian and Kalmyk animals. In the Yakut breed, alleles associated with resistance to diseases are represented only by the BoLA-DRB3.2 allele *7 (1.2%). Thus, the Mongolian and Kalmyk cattle breeds are characterized by a wide diversity of alleles and genotypes for the BoLA-DRB3 gene. In contrast, the population of Yakut cattle from the Verkhoyanskii region of the Republic of Sakha has a poor diversity of alleles and genotypes for the BoLA-DRB3 gene and a very low level of heterozygosity, suggesting an unfavorable state of the population that is probably caused by inbreeding depression due to a long-term isolation and a small number of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号