首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular imprinting has become a promising approach for synthesis of polymeric materials having binding sites with a predetermined selectivity for a given analyte, the so‐called molecularly imprinted polymers (MIPs), which can be used as artificial receptors in various application fields. Realization of binding sites in a MIP involves the formation of prepolymerization complexes between a template molecule and monomers, their subsequent polymerization, and the removal of the template. It is believed that the strength of the monomer‐template interactions in the prepolymerization mixture influences directly on the quality of the binding sites in a MIP and consequently on its performance. In this study, a computational approach allowing the rational selection of an appropriate monomer for building a MIP capable of selectively rebinding macromolecular analytes has been developed. Molecular docking combined with quantum chemical calculations was used for modeling and comparing molecular interactions among a model macromolecular template, immunoglobulin G (IgG), and 1 of 3 electropolymerizable functional monomers: m‐phenylenediamine (mPD), dopamine, and 3,4‐ethylenedioxythiophene, as well as to predict the probable arrangement of multiple monomers around the protein. It was revealed that mPD was arranged more uniformly around IgG participating in multiple H‐bond interactions with its polar residues and, therefore, could be considered as more advantageous for synthesis of a MIP for IgG recognition (IgG‐MIP). These theoretical predictions were verified by the experimental results and found to be in good agreement showing higher binding affinity of the mPD‐based IgG‐MIP toward IgG as compared with the IgG‐MIPs generated from the other 2 monomers.  相似文献   

2.
A method for the selective detection of creatinine is reported, which is based on the reaction between polymerised hemithioacetal, formed by allyl mercaptan, o-phthalic aldehyde, and primary amine leading to the formation of fluorescent isoindole complex. This method has been demonstrated previously for the detection of creatine using creatine-imprinted molecularly imprinted polymers (MIPs) Since MIPs created using traditional methods were unable to differentiate between creatine and creatinine, a new approach to the rational design of a molecularly imprinted polymer (MIP) selective for creatinine was developed using computer simulation. A virtual library of functional monomers was assigned and screened against the target molecule, creatinine, using molecular modelling software. The monomers giving the highest binding score were further tested using simulated annealing in order to mimic the complexation of the functional monomers with template in the monomer mixture. The result of this simulation gave an optimised MIP composition. The computationally designed polymer demonstrated superior selectivity in comparison to the polymer prepared using traditional approach, a detection limit of 25 μM and good stability. The ‘Bite-and-Switch’ approach combined with molecular imprinting can be used for the design of assays and sensors, selective for amino containing substances.  相似文献   

3.
Surface molecular imprinting by atom transfer radical polymerization   总被引:1,自引:0,他引:1  
Wei X  Li X  Husson SM 《Biomacromolecules》2005,6(2):1113-1121
Results are presented that demonstrate the successful preparation of ultrathin (< 10 nm), surface-confined, molecularly imprinted polymer (MIP) films on model gold substrates using atom transfer radical polymerization (ATRP). 2-Vinylpyridine (2Vpy) was investigated as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) was the cross-linking monomer. Fluorescently labeled N,N'-didansyl-L-cystine and N,N'-didansyl-L-lysine were used as the template molecules to form the MIPs. Spectroscopic and ellipsometric results are presented that follow film formation and growth rates. Results are also presented from fluorescence experiments used to quantify and compare the adsorption capacities of MIP surface films and nonimprinted (NIP) control films. MIP films exhibited higher binding capacities than the control NIP films at all solution concentrations of N,N'-didansyl-L-cystine and N,N'-didansyl-L-lysine. Furthermore, template removal from these imprinted films appears to be 100% efficient. Selectivity studies showed that the MIPs display some cross-reactivity between these two molecules; nevertheless, MIPs prepared against one template showed selectivity for that template. A selectivity coefficient of 1.13 was achieved for MIP surfaces prepared against N,N'-didansyl-L-lysine; a value of 1.51 was observed for MIP surfaces prepared against N,N'-didansyl-L-cystine.  相似文献   

4.
Gallic acid (GA) is important for pharmaceutical industries as an antioxidant. It also finds use in tanning, ink dyes and manufacturing of paper. Molecularly imprinted polymers (MIP), which are tailor made materials, can play an excellent role in separation of GA from complex matrices. Molecular recognition being the most important property of MIP, the present work proposes a methodology based on density functional theory (DFT) calculations for selection of suitable functional monomer for a rational design of MIP with a high binding capacity for GA. A virtual library of 18 functional monomers was created and screened for the template GA. The prepolymerization template-monomer complexes were optimized at B3LYP/6-31G(d) model chemistry and the changes in the Gibbs free energy (ΔG) due to complex formation were determined on the optimized structures. The monomer with the highest Gibbs free energy gain forms most stable complex with the template resulting in formation of more selective binding sites in the polymeric matrix in MIPs. This can lead to high binding capacity of MIP for GA. Amongst the 18 monomers, acrylic acid (AA) and acrylamide (AAm) gave the highest value of ΔG due to complex formation with GA. 4-vinyl pyridine (4-Vp) had intermediate value of ΔG while, methyl methacrylate (MMA) gave least value of ΔG due to complex formation with GA. Based on this study, the MIPs were synthesized and rebinding performance was evaluated using Langmuir-Freundlich model. The imprinting factor for AA and AAm based MIPs were 5.28 and 4.80 respectively, 4-Vp based MIP had imprinting factor of 2.59 while MMA based MIP exhibited an imprinting factor of 1.95. The experimental results were in good agreement with the computational predictions. The experimental data validated the DFT based computational approach.  相似文献   

5.
When synthesizing molecularly imprinted polymers (MIPs), a few fundamental principles should be kept in mind. There is a strong correlation between porogen polarity, MIP microenvironment polarity and the imprinting effect itself. The combination of these parameters eventually determines the overall binding behavior of a MIP in a given solvent. In addition, it is shown that MIP binding is strongly influenced by the polarity of the rebinding solvent. Because the use of MIPs in biomedical environments is of considerable interest, it is important that these MIPs perform well in aqueous media. In this article, various approaches are explored towards a water compatible MIP for the target molecule l-nicotine. To this end, the imprinting effect together with the MIP matrix polarity is fine-tuned during MIP synthesis. The binding behavior of the resulting MIPs is evaluated by performing batch rebinding experiments that makes it possible to select the most suitable MIP/non-imprinted polymer couple for future application in aqueous environments. One method to achieve improved compatibility with water is referred to as porogen tuning, in which porogens of varying polarities are used. It is demonstrated that, especially when multiple porogens are mixed, this approach can lead to superior performance in aqueous environments. Another method involves the incorporation of polar or non-polar comonomers in the MIP matrix. It is shown that by carefully selecting these monomers, it is also possible to obtain MIPs, which can selectively bind their target in water.  相似文献   

6.
A simplified computational model was proposed to simulate the synthesis of molecularly imprinted polymers (MIP), removal of template and recognition of the template and its analogues by MIP. The MIPs with nicotinamide and iso-nicotinamide as templates were prepared using methacrylic acid as functional monomer. Based on our computational model, the interaction energies between the monomer and the template or its analogues were calculated, which were well correlated with the retention factors and imprinting factors obtained on HPLC columns packed with the corresponding MIP particles. The imprinting effects of the template and its analogues were also investigated from the viewpoint of conformational analysis. The computational data were successfully used to predict the chromatographic behaviour of some chemicals in separation on HPLC columns. We believe that the computational method will find application in designing monomers for MIP synthesis and in studying recognition of templates and their analogues on MIP.  相似文献   

7.
The preparation of molecularly imprinted polymers (MIPs) involves the polymerisation of functional monomers in the presence of template molecules. 5,7-Dimethoxycoumarin (DMC) was found to be a structural analogue for aflatoxin B1 (AB1) and serves as its substitute in a grafting solution for the MIP synthesis. It was found that both methacrylic acid and allylamine are functional monomers which could provide a similar binding towards AB1 and DMC.  相似文献   

8.
Although N-isopropylacrylamide (NIPAM) has previously been used in molecular imprinting, it has mostly been considered as an 'inert' monomer, or included for its temperature-responsive nature, rather than as a functional monomer responsible for the interactions with the template at the recognition site. A comparative study of NIPAM and other traditional, functional monomers for the imprinting of a hydrogen bond donor template, bisphenol A (BPA), is reported. Nuclear magnetic resonance titration data suggest that NIPAM forms a stronger complex with BPA than either acrylamide or methacrylic acid but a weaker complex than vinylpyridine. Molecular imprinted polymers (MIPs) were prepared using each functional monomer and compared as stationary phases for the separation of BPA from structural analogues. The NIPAM-containing MIP bound BPA with better selectivity than those prepared using acrylamide or methacrylic acid. Using NIPAM also reduces the nonspecific binding, which is found with MIPs using vinylpyridine as functional monomer.  相似文献   

9.
Novel molecularly imprinted polymers (MIPs) for the recognition of nitrofurantoin (NFT) were prepared by photoinitiated polymerisation in polar solvent using 2,6-bis(methacrylamido) pyridine (BMP) as the functional monomer and carboxyphenyl aminohydantoin (CPAH) as the analogue of the template. The binding constants of the complex between BMP and nitrofurantoin or CPAH in DMSO were determined with 1H NMR titration to be 630 ± 104 and 830 ± 146 M−1, respectively. To study the influence of the functional monomer, two polymer compositions were prepared containing the template, the functional monomer and the crosslinker in the molar ratio 1:1:12 for MIP1 and 1:4:20 for MIP2, respectively. The imprinting factor at saturation concentration of nitrofurantoin, which is the ratio of the amount bound to the MIP and the non-imprinted control polymer (NIP), was determined to be 2.47 for MIP1 and 2.49 for MIP2. The cross reactivity of the imprinted polymers seems to be determined by the ability to form hydrogen bonds to the functional monomer while the shape of the molecule has no real influence.  相似文献   

10.
In this study, a molecularly imprinted polymer (MIP) was prepared to selectively template the [2+2] photodimerization of trans-1,2-bis(4-pyridyl)ethylene. First, an MIP selective for rctt-tetrakis(4-pyridyl)cyclobutane, which is the [2+2] photodimerization product of trans-1,2-bis(4-pyridyl)ethylene, was prepared from methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA). The non-covalent MIP showed enhanced affinity for both the templating agent, rctt-tetrakis(4-pyridyl)cyclobutane, and the alkene precursor, trans-1,2-bis(4-pyridyl)ethylene. The solid-state photodimerization reaction proceeded in significantly higher yields in the presence of the MIP. Control reactions carried out in the absence of polymer gave no product, and reactions carried out in the presence of a non-imprinted polymer and an MIP imprinted with a different template, 3-hydroxymethylpyridine, gave much lower yields of the cyclobutane photodimerization product. The outcome of the MIP-templated photodimerization reaction was strongly influenced by the binding site heterogeneity of the non-covalently imprinted polymers. For example, higher yields were observed with decreasing olefin loadings levels on the MIPs. This binding site heterogeneity was characterized via application of the Freundlich binding model to the experimentally measured binding isotherms. These confirmed that the non-covalent MIPs had very few high-affinity binding sites, which greatly limits the capacity and ultimately the utility of these materials as templates in synthetic organic applications.  相似文献   

11.
Reflectometric interference spectroscopic measurements were performed on molecularly imprinted polymer (MIP) films with the herbicide atrazine as the template molecule. A conventional imprinting protocol was used relying on non-covalent interactions between the functional monomers and the template. The MIPs were deposited on glass transducers by two different methods: spin-coating followed by in situ polymerization of thin films of monomers containing a sacrificial polymeric porogen, and autoassembly of MIP nanoparticles with the aid of an associative linear polymer. Reproducible results were obtained upon measurements of atrazine solutions in toluene with both films. Atrazine concentrations as low as 1.7 ppm could be detected with the autoassembled particle film. No or very little analyte adsorption was observed onto non-imprinted control films made by spin-coating and by particle assembly, respectively. We believe that these MIP layers in combination with the general reflectrometric transduction scheme could be a versatile sensing tool for the detection of environmentally important and other analytes.  相似文献   

12.
The performance of molecularly imprinted polymers (MIPs) is of interest to researchers in the field of analytical chemistry, and in the pharmaceutical and food industries. Because the choice of the functional monomer(s) plays a key role in the selectivity of a MIP, the synthesis of an effective, tight-binding MIP can be difficult and time-consuming, involving the evaluation of the binding performance of MIPs of many different compositions. In this study, we report an express method combining molecular imprinting and microcontact printing techniques to prepare a polymer thin film as an artificial antibody. In addition to the microcontact printing technique, isothermal titration of monomers to proteins stamps was investigated to screen the functional monomer for MIPs. Finally, the importance of the choice of cross-linking monomers in MIPs was studied, and these studies suggest that monomers containing an optimal length PEG spacer give higher imprinting effectiveness. Several model antigens (lysozyme, ribonuclease A and myoglobin) were adsorbed on a cover glasses that were pretreated with hexamethyldisilazane (HMDS). These protein stamps were then contacted with different monomer solutions (cross-linking monomers) on a glass slide substrate. Photopolymerization yielded the molecularly imprinted polymer. This technique, analogous to microcontact printing, allows for the rapid, parallel synthesis of MIPs of different compositions, and requires very small volumes of monomers (ca. 4 microL). The technique also avoids potential solubility problems with the molecular targets. Of several cross-linking monomers screened, tetraethyleneglycol dimethacrylate (TEGDMA) gave the most selective lysozyme binding, while polyethyleneglycol 400 dimethacrylate (PEG400DMA) were most selective for ribonuclease A and myoglobin.  相似文献   

13.
Molecularly imprinted polymers (MIPs) were grafted on iniferter-modified carbon nanotube (CNT). Tween 20 was first immobilized on CNT by hydrophobic interactions. The hydroxyl-functionalized CNT was modified by silanisation with 3-chloropropyl trimethoxysilane. The iniferter groups were then introduced by reacting the CNT-bound chloropropyl groups with sodium N,N-diethyldithiocarbamate. UV light-initiated copolymerization of ethylene glycol dimethacrylate (crosslinking agent) and methacrylic acid (functional monomer) resulted in grafting of MIP on CNT for theophylline as a model template. MIPs grafted on CNT were characterized with elemental analysis, scanning electron microscopy, and thermogravimetric analysis. The theophylline-imprinted polymer on CNT showed higher binding capacity for theophylline than non-imprinted polymer on CNT and selectivity for theophylline over caffeine and theobromine (similar structure molecules). The data of theophylline and caffeine binding into the theophylline-imprinted polymer correlated well with the Scatchard plot. These MIPs on CNT can potentially be applied to probe materials in biosensor system based on CNT field effect transistor.  相似文献   

14.
Molecularly imprinted polymers (MIPs) using p-hydroxybenzoic acid (p-HB), p-hydroxyphenylacetic acid (p-HPA) and p-hydroxyphenylpropionic acid (p-HPPA) as templates were synthesized. The performance of the templates and their analogues on polymer-based high performance liquid chromatography (HPLC) columns was studied. The imprinting effect of the MIP using p-HB as template is more obvious than that of MIP using either p-HPA or p-HPPA as template, and the mixture of p-HB and p-HPA can be well separated on the MIP using p-HB as template, but not on the blank. Interestingly, the recognition of MIP (p-HB as the template) to p-HB showed a synergistic effect. The retention factor of p-HB is not the sum of those of phenol and benzoic acid. We also found that the imprinting effect decreased when increasing the concentration of acetic acid in mobile phase. The possible reason is that acetic acid molecules occupied the binding sites of the polymer, thereby decreasing the concentration of binding sites. Furthermore, polymers, which showed specificity to 3,4-dihydroxybenzoic acid, can be prepared with p-HB as template. It is thus possible to synthesize a specific polymer for a compound that is either expensive or unstable by using a structurally similar compound as template.  相似文献   

15.
Molecularly impregnated membranes for selective recognizing of adenosine 3',5'-cyclic monophosphate (cAMP) were obtained and their separation properties were studied. Composite polyvinylidenfluoride microfiltration membranes covered with a thin layer of polymer impregnated with cAMP were prepared using photoinitiated copolymerization of dimethylaminoethylmethacrylate as a functional monomer and trimethylolpropane thrimethacrylate as a cross-linker in the presence of cAMP as a template. It was concluded that the ability of MIP membranes to selective binding of cAMP is a result of both specific shape and dimension of the recognizing site as well as specific interactions between functional groups responsible for selective template binding inside the receptor site.  相似文献   

16.
For the first time in this work, uniform molecularly imprinted polymer (MIP) nanoparticles were prepared using nalidixic acid as a template. The MIP nanoparticles were successfully synthesized by precipitation polymerization applying methacrylic acid (MAA) as a functional monomer and trimethylolpropane trimethacrylate (TRIM) as a cross-linking monomer at different mole ratios. The morphology, binding, recognition, selectivity, and in vitro release behaviors of obtained particles were studied. The produced polymers were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetric. Furthermore, their morphology was analyzed accurately by scanning electron microscopy, photon correlation spectroscopy, and Brunauer-Emmett-Teller analysis. The nanospheres and microspheres with mean diameter values of 94 nm, 256 nm, and 1.2 μm were obtained using nalidixic acid-MAA-TRIM various mole ratios. Among the MIPs, the product with nalidixic acid-MAA-TRIM mole ratio of 1:12:12 established nanospheres with the lowest polydispersity index (0.003), an average pore diameter (12 nm), and the highest specific surface area (280 m(2) g(-1)) and selectivity factor (10.4). Results from binding experiments demonstrated that the imprinted nanospheres with a 94-nm mean diameter and a binding capacity of 28 mg of nalidixic acid per gram of polymer had higher specific affinity to nalidixic acid in contrast with the other imprinted nanospheres, microspheres, and nonimprinted particles. However, the binding performance of imprinted nanospheres in human serum was estimated using high-performance liquid chromatography analysis (binding approximately 98% of nalidixic acid). In addition, release experiments proved to be successful in the controlled release of nalidixic acid during a long period. The 20% of loaded nalidixic acid was released from the imprinted nanospheres within the first 20 h, whereas the remaining 80% was released in the after 120 h. The nalidixic acid release kinetics from the MIPs was highly affected by properties of the particles.  相似文献   

17.
The use of molecularly imprinted polymers (MIPs) as sorbents for the solid phase extraction (SPE) of a pharmaceutical compound in development, prior to quantitative analysis was investigated. Three MIPs were synthesised using a structural analogue as the template molecule. Each polymer was prepared with different monomers and porogens. The MIPs were then tested for their performance both in organic and aqueous environments, the final aim being to load plasma directly onto the polymers. At an early development stage, there is a limited amount of compound available. Due to this limitation, reducing the amount of template required for imprinting was investigated. A MIP capable of extracting the analyte directly from plasma was produced. The specificity of the polymer allowed the method to be validated at a lower sensitivity than a more conventional SPE assay. For the first time, MIPs were packed into 96-well blocks enabling high throughput analysis. The analytical method was fully validated for imprecision and inaccuracy down to 4 ng/ml in plasma.  相似文献   

18.
The cystine‐bridged cyclic peptide hormones (CBCPHs) represent signature structural feature as well as unique biological activity. In this study, three CBCPHs have been identified and characterized, namely, oxytocin, atrial natriuretic peptides (ANPs), and brain natriuretic peptides (BNPs). Because research has shown that ANPs and BNPs are powerful diagnostic biomarkers for heart disease, a highly laudable endeavor would be to develop a novel sensor for detecting ANP or BNP levels. Therefore, an amphiphilic monomer Acr‐His‐NHNH‐Fmoc was synthesized to form molecularly imprinted polymers (MIPs) for targeted CBCPH detection. First, oxytocin, a cardiovascular hormone and a CBCPH, was used as a template to fabricate MIPs on quartz crystal microbalance (QCM) chips. On the other hand, fabricated selected ANP segment or BNP segment as an epitope is able to construct epitope‐mediated MIPs (EMIPs) for ANP or BNP. The developed oxytocin or ANP sensor reached a detection limitation of 0.1nM with the dissociation constants being 30pM for oxytocin and 20pM for ANP. Moreover, BNP sensor achieved a detection limitation of 2.89pM with an even lower Kd value as 2pM. Compared with the performance of EMIPs, the imprinted films showed high affinity and selectivity in special binding to CBCPHs. The developed MIPs‐QCM biosensors thus provide an improved sensing platform using an amphiphilic monomer and may be useful for applications toward cyclotides, cystine knot motifs, or insulin‐like peptides.  相似文献   

19.
Molecular imprinting is a technique for creating artificial receptor sites in a polymer. Molecularly imprinted polymers (MIPs) are produced by forming a polymer around a molecule that is used as the template. Upon removal of the template, molecular holes remain which are specific in shape and size to the target molecule. In this research, a MIP was formed for theophylline using a copolymer of methacrylic acid and ethylene glycol dimethacrylate. The theophylline MIP was formed on two platforms: indium tin oxide (ITO) and silicon, which were used as the working electrode for cyclic voltammetry measurements. The presence of theophylline was measured using cyclic voltammetry and corresponded to the peak current on the cyclic voltammograms. The results of this research agreed with previous results of MIPs immobilized on an ITO platform. The peak currents of the MIP in the presence and absence of theophylline were compared to the blank polymer for each platform. The ratio of peak currents on ITO increased by a factor of 9.5 for the MIP compared to the non-imprinted polymer. Similarly, the ratio of peak currents on silicon increased by a factor of 6 compared to the non-imprinted polymer. This research demonstrated a procedure for evaluating a MIP layer on two different platforms.  相似文献   

20.
Uniform molecular imprinting microspheres were prepared using precipitation polymerization with thifensulfuron‐methyl (TFM) as template, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. TFM could be selectively adsorbed on the molecularly imprinted polymers (MIPs) matrix through the hydrogen bonding interaction and the adsorbed TFM could be sensed by its strikingly enhancing effect on the weak chemiluminescence (CL) reaction between luminol and hydrogen peroxide. On this basis, a novel CL sensor for the determination of TFM using MIPs as recognition elements was established. The logarithm of net CL intensity (ΔI) is linearly proportional to the logarithm of TFM concentration (C) in the range from 1.0 × 10?9 to 5.0 × 10?5 mol L?1 with a detection limit of 8.3 × 10?10 mol L?1 (3σ). The results demonstrated that the MIP–CL sensor was reversible and reusable and that it could strikingly improve the selectivity and sensitivity of CL analysis. Furthermore, it is suggested that the CL enhancement of luminol–H2O2 by TFM might be ascribed to the enhancement effect of CO2, which came from TFM hydrolysis in basic medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号