首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.  相似文献   

2.
Zygosaccharomyces bailii ISA 1307 and the type strain of this spoilage yeast show a diploid DNA content. Together with a rather peculiar life cycle in which mitotic but no meiotic spores appear to be formed, the diploid DNA content explains the observed difficulties in obtaining auxotrophic mutants. Mitotic chromosome loss induced by benomyl and selection on canavanine media resulted in three haploid strains of Z. bailii. This new set of Z. bailii strains allows the easy isolation of recessive mutants and is suitable for further molecular genetic studies.  相似文献   

3.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

4.

Background  

Zygosaccharomyces bailii is a diploid budding yeast still poorly characterized, but widely recognised as tolerant to several stresses, most of which related to industrial processes of production. Because of that, it would be very interesting to develop its ability as a cell factory. Gas1p is a β-1,3-glucanosyltransglycosylase which plays an important role in cell wall construction and in determining its permeability. Cell wall defective mutants of Saccharomyces cerevisiae and Pichia pastoris, deleted in the GAS 1 gene, were reported as super-secretive. The aim of this study was the cloning and deletion of the GAS 1 homologue of Z. bailii and the evaluation of its deletion on recombinant protein secretion.  相似文献   

5.
In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (∼90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are ‘Metabolism and generation of energy’, ‘Protein folding, modification and targeting’ and ‘Biogenesis of cellular components’. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations.  相似文献   

6.
Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.  相似文献   

7.
Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATα mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.  相似文献   

8.
Three different yeast strains, namely Saccharomyces cerevisiae mnn1mnn9, Kluyveromyces lactis JA6/GAA and Zygosaccharomyces bailii [pZ3klIL-1β], were entrapped in polyvinyl alcohol (PVA) gel particles, obtained following the commercially available immobilization kit named Lentikat®. After immobilization in the PVA-gel particles, yeast cells remained viable: colonization of the gel matrix reached up 100 mg d.w. of cells cm−3 gel for all the strains examined.Lentikats® of K. lactis JA6/GAA and Z. bailii [pZ3klIL-1β] showed to be suitable for the continuous production of glucoamylase and interleukin 1β, respectively, when employed under non-selective conditions. They were of easy handiness and showed excellent mechanical properties during prolonged operation in stirred tank reactors.  相似文献   

9.
We have isolated mutants sensitive to photo-addition of bi-functional and mono-functional derivatives of psoralen in Saccharomyces cerevisiae. Three of these pso mutants were analyzed in detail. They segregate in meiosis like Mendelian genes and complement each other, as well as existing radiation-sensitive (rad and rev) mutants. The study of heterozygous diploid strains (PSO+/pso) indicates that the three pso genes are recessive. The mutant pso1–1 demonstrates a cross-sensitivity to UV and γ-rays, whereas mutants pso2–1 and pso3–1 are specifically sensitive to photo-addition of psoralen derivatives. The comparison of exponentially growing cells to stationary-phase cells demonstrates that for the three mutants the defect in repair capacity of DNA cross-links and monoadducts concerns G1 and early S-phase cells. The pso2–1 mutant is, however, also defective in G2 repair and loses diploid resistance when it is in the homozygous state.—The block in repair capacity in these novel mutants is discussed in relation to the three other repair pathways known to be involved in the repair of furocoumarins photo-induced lesions in yeast DNA.  相似文献   

10.
Auxotrophic mutants of the yeast Saccharomyces cerevisiae are usually isolated in haploid strains because the isolation of recessive mutations in diploids is thought to be difficult due to the presence of two sets of genes. We show here that auxotrophic mutants of diploid industrial sake yeast strains were routinely obtained by a standard mutant selection procedure following UV mutagenesis. We isolated His, Met, Lys, Trp, Leu, Arg, and Ura auxotrophic mutants of five sake strains, Kyokai no. 7, no. 9, no. 10, no. 701, and no. 901, by screening only 1,700 to 3,400 colonies from each treated strain. Wild-type alleles were cloned and used as markers for transformation. With HIS3 as a selectable marker, the yeast TDH3 overexpression promoter was inserted upstream of ATF1, encoding alcohol acetyltransferase, by one-step gene replacement in a his3 mutant of Kyokai no. 7. The resulting strain contained exclusively yeast DNA, making it acceptable for commercial use, and produced a larger amount of isoamyl acetate, a banana-like flavor. We argue that the generally recognized difficulty of isolating auxotrophic mutants of diploid industrial yeast strains is misleading and that genetic techniques used for haploid laboratory strains are applicable for this purpose.  相似文献   

11.
Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations.  相似文献   

12.
The chemotherapeutic doxorubicin (DOX) induces DNA double-strand break (DSB) damage. In order to identify conserved genes that mediate DOX resistance, we screened the Saccharomyces cerevisiae diploid deletion collection and identified 376 deletion strains in which exposure to DOX was lethal or severely reduced growth fitness. This diploid screen identified 5-fold more DOX resistance genes than a comparable screen using the isogenic haploid derivative. Since DSB damage is repaired primarily by homologous recombination in yeast, and haploid cells lack an available DNA homolog in G1 and early S phase, this suggests that our diploid screen may have detected the loss of repair functions in G1 or early S phase prior to complete DNA replication. To test this, we compared the relative DOX sensitivity of 30 diploid deletion mutants identified under our screening conditions to their isogenic haploid counterpart, most of which (n = 26) were not detected in the haploid screen. For six mutants (bem1Δ, ctf4Δ, ctk1Δ, hfi1Δ,nup133Δ, tho2Δ) DOX-induced lethality was absent or greatly reduced in the haploid as compared to the isogenic diploid derivative. Moreover, unlike WT, all six diploid mutants displayed severe G1/S phase cell cycle progression defects when exposed to DOX and some were significantly enhanced (ctk1Δ and hfi1Δ) or deficient (tho2Δ) for recombination. Using these and other “THO2-like” hypo-recombinogenic, diploid-specific DOX sensitive mutants (mft1Δ, thp1Δ, thp2Δ) we utilized known genetic/proteomic interactions to construct an interactive functional genomic network which predicted additional DOX resistance genes not detected in the primary screen. Most (76%) of the DOX resistance genes detected in this diploid yeast screen are evolutionarily conserved suggesting the human orthologs are candidates for mediating DOX resistance by impacting on checkpoint and recombination functions in G1 and/or early S phases.  相似文献   

13.
Lactic acid represents an important class of commodity chemicals, which can be produced by microbial cell factories. However, due to the toxicity of lactic acid at lower pH, microbial production requires the usage of neutralizing agents to maintain neutral pH. Zygosaccharomyces bailii, a food spoilage yeast, can grow under the presence of organic acids used as food preservatives. This unique trait of the yeast might be useful for producing lactic acid. With the goal of domesticating the organic acid‐tolerant yeast as a metabolic engineering host, seven Z. bailii strains were screened in a minimal medium with 10 g/L of acetic, or 60 g/L of lactic acid at pH 3. The Z. bailii NRRL Y7239 strain was selected as the most robust strain to be engineered for lactic acid production. By applying a PAN‐ARS‐based CRISPR‐Cas9 system consisting of a transfer RNA promoter and NAT selection, we demonstrated the targeted deletion of ADE2 and site‐specific integration of Rhizopus oryzae ldhA coding for lactate dehydrogenase into the PDC1 locus. The resulting pdc1::ldhA strain produced 35 g/L of lactic acid without ethanol production. This study demonstrates the feasibility of the CRISPR‐Cas9 system in Z. bailii, which can be applied for a fundamental study of the species.  相似文献   

14.
Premeiotic DNA synthesis in fission yeast   总被引:57,自引:0,他引:57  
Sporulating and various non-sporulating strains of S. pombe, especially several mutants deficient in conjugation or meiosis, were compared with respect to DNA synthesis under sporulation conditions. Meiosis and sporulation were induced by a transfer to nitrogen-free medium. As synchronized mitotic division was observed in all the strains as a first response to the shift, reducing the DNA amount per cell from the replicated state in G2 to the unreplicated state in the G1 phase of the cell cycle. Cells of the heterothallic wild-type strains (h+h+ or h?h?) accumulated in G1 with respect to DNA synthesis when they were incubated separately. In a mixed culture of these strains a period of enhanced DNA synthesis was observed after the start of zygote formation. This period of synthesis was absent in mutant fus1, where only prezygotes accumulated. Hence we conclude that in zygotic meiosis the premeiotic DNA synthesis is confined to zygotes after conjugation has been completed. In the diploid sporulating wild-type strain (h+h?), capable of azygotic meiosis without prior conjugation, premeiotic DNA synthesis occurred between 212 and 5 h after the shift to the sporulation medium. There was no significant premeiotic DNA synthesis observed in diploid cells of the meiosis-deficient mutants mei1 or mei3, whereas premeiotic DNA synthesis proceeded normally in mutant mei4, which is blocked at a stage after commitment to meiosis in opposition to both the other mutants.  相似文献   

15.
A forced heterocaryon was established between two auxotrophic conidial color mutants of Metarhizium anisopliae. From the heterocaryon, a prototrophic somatic diploid was selected which, in turn, yielded somatic segregants. The virulence of the original mutants, the somatic diploid, and the somatic segregants was evaluated on three species of mosquitoes as well as on Ostrinia nubilalis larvae. The virulence of the somatic diploid was comparable to that of the wild-type parental strain while the auxotrophic somatic segregants exhibited virulence approximately equal to that of the auxotrophic components of the heterocaryon. Putative somatic diploids were obtained between morphological mutants of the two species varieties (M. anisopliae var. minor and var. major). The presumptive diploids were avirulent for the insect species to which the parental strains exhibited virulence.  相似文献   

16.
An intensive parasexual genetics program in which industrial strains of Penicillium chrysogenum were used culminated in the isolation of a number of heterozygous diploid strains. The diploid clones were selected from heterokaryons formed from matings between mutant strains having complementary biochemical and conidial color markers. Several diploid cultures were compared with their haploid wild-type parents and other distantly related production strains on the basis of a variety of cultural and physiological criteria. The diploid strains characteristically produced conidia of larger volume and higher deoxyribonucleic acid content. Some were vigorous with respect to growth rate and onset and degree of conidiation. One diploid strain (WC-9) had a 46% greater oxygen uptake rate and oxidized glucose at a 57% greater rate than its haploid parent (M-2). It also produced 33% higher concentrations of β-galactosidase, 66% more alkaline protease, and 53% more glucose oxidase than the M-2 haploid parent. The selection of rare stable diploid mold cultures through the use of parasexual genetics offers a unique approach to the direct selection of mutants with potential for increased enzyme formation.  相似文献   

17.
Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic‐acid‐tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo­lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin‐treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744–753. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

18.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk? mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

19.
Wild-type strains of Zymomonas mobilis exhibit multiple antibiotic resistance and thus restrict the use of many broad-host-range plasmids in them as cloning vehicles. Antibiotic-sensitive mutants of Z. mobilis were isolated and used as hosts for the conjugal transfer of broad-host-range plasmids from Escherichia coli. Such antibiotic-sensitive strains can facilitate the application of broad-host-range plasmids to the study of Z. mobilis.  相似文献   

20.
Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号