首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three identifiable giant neurons, which were morphologically and pharmacologically identical, named TAN (tonically autoactive neuron), TAN-2 and TAN-3, were found in line on the dorsal surface of the right parietal ganglion in the suboesophageal ganglia of an African giant snail (Achatina fulica Férussac). The diameters of these neurons were 150-200 microns. They showed regular spontaneous spike discharges at the rate of 30-40 per min. However, the spike discharges of the three neurons were not synchronized. For morphological studies of these neurons, Lucifer Yellow was injected into their somata by pressure. The axonal branches of the three neurons examined extended commonly into the following seven peripheral nerves: left anterior pallial, left posterior pallial, intestinal, anal, right posterior pallial, right anterior pallial and right anterior pallial accessory nerves. The sensitivities of the three neurons examined to the main neurotransmitter candidates and their derivatives were almost identical. These neurons were excited by 5-hydroxytryptamine [the minimum effective concentration (MEC): 10(-5)-10(-4) M] and histamine (MEC: 1-3 X 10(-4) M), and inhibited by dopamine (MEC: 1-3 X 10(-4) M), L-norepinephrine (MEC: 3 X 10(-4)-10(-3) M), L-epinephrine (MEC: 3 X 10(-4) M), GABA (MEC: 10(-5)-10(-4)), acetylcholine (MEC: 1-3 X 10(-4) M) and its derivatives.  相似文献   

2.
The regulation of the heartbeat by the two largest neurons, d-VLN and d-RPLN, on the dorsal surface of visceral and right parietal ganglia of Giant African snail, Achatina fulica, was examined. Using the new method of animal preparation, for the first time, discrete biphasic inhibitory-excitatory junction potentials (I-EJPs) in the heart and several muscles of the visceral sac were recorded. The duration of hyperpolarizing phase (H-phase) of biphasic I-EJPs was 269+/-5.6 ms (n=5), which is 2-3 times less than that of the cholinergic inhibitory JPs (682+/-68.5 ms, n=5). The H-phase of I-EJPs was not altered by the application of atropine, picrotoxine, succinylcholinchloride, D-tubocurarine and tetraethylammonium or substitution of Cl(-) ions. Even the low-frequency neuronal discharges (1-2 imp/s) evoked significant facilitation and potentiation of the H-phase. Between the multimodal neurons d-VLN/d-RPLN and mantle or visceral organs there is evidence of direct synaptic connections. These neurons were found to have no axonal branches in the intestinal nerve as once suspected but reach the heart through several other nerves. New giant heart motoneurons do not interact with previously identified cardioregulatory neurons.  相似文献   

3.
Thirteen synthetic biologically-active peptides, which were classified into the peptides proposed as neurotransmitters in mammals and invertebrates and neural venom peptides, were investigated for their effects on the following six identifiable giant neurons of an African giant snail (Achatina fulica Férussac): RAPN (right anterior pallial neuron), INN (intestinal nerve neuron), RPeNLN (right pedal nerve large neuron), LPeNLN (left pedal nerve large neuron), d-LPeLN (dorsal-left pedal large neuron) and d-LPeCN (dorsal-left pedal constantly firing neuron). Oxytocin and proctolin at 10(-4)M excited the RAPN membrane potential, whereas FMRFamide at the same concentration inhibited the same neuron. FMRFamide at 10(-4)M markedly inhibited the d-LPeLN membrane potential, sometimes produced inhibition of RPeNLN and LPeNLN, showed varied effects (excitatory or inhibitory) on INN, and had no effect on d-LPeCN. The other peptides examined had almost no effect on any of the neurons tested.  相似文献   

4.
Abstract. In this work we investigated the involvement of putative nitric oxide (NO)-forming neurons in enteric plexuses of stylommatophoran gastropods. The nitric oxide synthase (NOS)-containing cells were detected by NADPH diaphorase (NADPHd) histochemistry in the entreral nervous systems of several stylommatophoran species (Achatinacea: Achatina fulica , Helicacea: Cepaea hortensis, Cepaea nemoralis, Discus rotundatus, Helicella obvia, Helix lucorum, Helix lutescens, Monachoides umbrosa, Trichia hispida, Zebrina detrita , Succineacea: Succinea putris , Vertiliginacea: Clausilia dubia , Zonitacea: Arion ater, Arion subfuscus, Limax maximus ). We detected the NO synthesis of isolated midintestinal segments by Griess's quantification of nitrite, one end product of NO. Effects of the NOS substrate L-arginine and the NOS inhibitor Nω-nitro-L-arginine (NOARG) were also tested on nitrite production. We found NADPHd-reactive neurons and extrinsic nerves with NADPHd-stained fibers within the myenteric and submucosal networks of the midintestine of investigated members of Helicacea, Succineacea, and Vertiliginacea families. These networks innervated the midintestinal musculature and several nerve cells of the myenteric and submucosal plexi. In investigated members of Achatinacea and Zonitacea, NADPHd-stained networks were not detectable within the digestive tract. Administration of 1 mM L-arginine elevated, whereas 2 mM of NOARG diminished, the nitrite levels of the NADPHd-stained networks containing midintestine in C. nemoralis and H. lucorum . Enteral NADPHd staining was not detected in A. ater and L. maximus , and the nitrite production was not affected by L-arginine. Our results indicate a possible, but evolutionarily not conserved, NO-mediated enteral transmission in stylommatophoran gastropods.  相似文献   

5.
In acute experiments on dogs, we demonstrated that local immunogenic injury to the heart resulting from injection of anticardial cytotoxic serum is accompanied by suppression of a vagus-mediated depressor reflex evoked by intracoronary injection of 5 μg veratrine. Preliminary i.v. injection of 250 mg/kg phosphocreatine to a significant extent prevented the development of immunogenic heart injury and served to normalize the cardiogenic depressor reflex (we measured the heart rate, systemic arterial pressure, pressure in the left ventricle, and its first derivative, and also recorded the afferent activity in the cardial branches of the vagus nerve). These data are indicative of a protective effect of phosphocreatine on the receptor and afferent structures in the heart. At the same time, a parallel study of the effects of application of phosphocreatine on the spike activity of single neurons and on evoked potentials in the neocortex of rats showed that phosphocreatine increases the excitability of cortical neurons by facilitating the processes of synaptic transmission. This was manifested in an increase in the frequency of background spike activity of the neurons and in facilitation of the development of epileptiform reactions evoked by surface application of penicillin after preliminary applications of phosphocreatine.  相似文献   

6.
Repeated tactile stimulation of the skin evoked sensitization and subsequent habituation of a behavioral avoidance reaction of pneumostome closure in the land snail, Helix lucorum L. Spike responses in putative command neurons for avoidance behavior increased and subsequently decreased parallel to behavioral events. Decrease of spike responses in command neurons was due to decreased synaptic input evoked by repeated tactile stimulation. Intracellular investigation of the increase in the spike response in command neurons for pneumostome closure, which underlies behavioral sensitization, revealed a synpatically-evoked, long-lasting depolarization. No conductance changes during this depolarization were found, but neuronal excitability was altered.  相似文献   

7.
Summary The electrical activity of the heart nerve and of single neurons in the suboesophageal ganglia were recorded during tactile stimulation of the heart. 15 neurons were identified which responded to heart stimulation by inhibiting or accelerating activity. Cells influenced by heart afferents are scattered in the visceral and in the right and left parietal ganglia.In most of the cases both decrease and increase of cell activity are caused by synaptic potentials, in some cases, however, the neuron is assumed to have a sensory character.The activity of three neurons influenced by heart stimulation was conducted into the heart nerve. These cells are central neurons of a heart-CNS-heart reflex.Some of the neurons located in the right parietal and visceral ganglia have no connection with the mechanoreceptors of the heart. Since their spikes propagate into the heart nerve, they probably take part in the extracardial regulation of heart activity.One of the neurons located in the visceral ganglion (cell V12) sends its axon into the heart nerve. The response of this neuron to heart stimulation was an increase in activity and an inhibition of the heart rate. This is an inhibitory neuron of the extracardial heart regulatory system.  相似文献   

8.
Two giant neurons, v- RPLN (ventral-right parietal large neuron) and v- VNAN (ventral-visceral noisy autoactive neuron), were identified on the ventral surface in the caudal part of the suboesophageal ganglia of the African giant snail (Achatina fulica F erussac ), and their pharmacological features to the common putative neurotransmitters and their related substances were examined. The giant neuron examined, v- RPLN , is situated in front of the exit of the right anterior pallial nerve in the right parietal ganglion. The neuron, which is 250-300 microns in diameter, one of the largest neurons in the ganglia, was usually silent without spontaneous firing. The neuron was excited by L-norepinephrine (L-NE), DL-octopamine (DL-OA), 5-hydroxytryptamine (5-HT), L-homocysteic acid (L-HCA) and erythro-beta-hydroxy-L-glutamic acid (erythro-L- BHGA ); and inhibited by dopamine (DA), GABA, acetylcholine (Ach) and its related substances. Another giant neuron examined, v- VNAN , is situated very close to the right side of the exit of the right posterior pallial nerve in the visceral ganglion. The neuron is elliptical and about 150 micron in diameter. It showed spontaneous firing highly modified by the synaptic influences. DA, 5-HT, glycine (Gly), GABA and its related substances, L-HCA, erythro-L- BHGA , and Ach and its related substances all had the direct (not via synaptic influences) excitatory effects on the neuromembrane examined. Some of them, for example, L-NE, 5-HT and Ach and its related substances caused transient excitation of the neuron, probably due to the synaptic influences, immediately after their application. No substance producing any inhibition of the neuron could be found in the present study.  相似文献   

9.
Using a new method of animal preparation, the efferent connections of giant paired neurons on the dorsal surface of visceral and right parietal ganglia of snail, Achatina fulica, were examined. It was found that spikes in giant neurons d-VLN and d-RPLN evoke postjunctional potentials in different points of the snail body and viscerae (in the heart, in pericardium, in lung cavity and kidney walls, in mantle and body wall muscles, in tentacle retractors and in cephalic artery). The preliminary analysis of synaptic latency and facilitation suggests a direct connections between giant neurons and investigated efferents.  相似文献   

10.
Effects of antibody against serotonin-modulated protein SMP-69 on defence behavior command neurons L-RP11 were studied in semi-intact preparation of snail Helix lucorum. An increase in membrane excitability as well as selective facilitation of neural responses evoked with chemical sensory stimulation of the snail head (0.25-0.5% quinine solution) were determined 1-1.5 hours after antibody application to the neurons. The antibody did not change neural responses evoked with tactile stimulation of the snail head. These effects were similar to those found in L-RP11 neurons after serotonin or cAMP applications as well as after nociceptive sensitization of the snail. It was suggested that protein homologically related the SMP-69 in mammalians was involved in mechanisms of excitability as well as long-term specific plasticity regulation of L-RP11 neurons synaptic inputs from the head chemoreceptors in snail Helix lucorum.  相似文献   

11.
We discovered an enhancing effect of background illumination on amplitude and total duration of electrical reactions of the tectum of the midbrain and pallial thickening in response to a flash and electrical stimulation of the optic nerve. This effect is analogous to the phenomenon of photic potentiation known for the visual system of mammals. Changes of evoked potentials in the contralateral pallial thickening and tectum were fairly stable and survived throughout the course of the entire period of illumination (up to 30 min). The effect was intensified with an increase of illumination intensity. Intensification of response on the part of the tectum and pallial thickening during steady illumination was accompanied by a weakening of slow background electrical activity. During the action of background illumination, the excitability of the tectum rose considerably with direct electrical stimulation. The influence of prolonged illumination on responses of the tectum and pallial thickening was more clearly detected at submaximal strengths of stimulation of the optic nerve or tectum. All of the effects of photic potentiation are confined to centers contralateral to the illuminated eye. This indicates the absence of diffuse effects on excitability of the turtle brain.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 219–224, September–October, 1969.  相似文献   

12.
The present communication concerns with the analysis of elementary and the compound excitatory postsynaptic potentials (eEPSPs and cEPSPs) recorded by intracellular microelectrode from an identified defensive command neuron of the snail Helix lucorum. The eEPSPs were evoked by single presynaptic action potentials (APs) elicited by cationic current injection into one of the identified sensory neurons synapsing on the respective command neuron. The cEPSPs were elicited by local brief tactile stimuli on the skin or internal organs. It was shown that the cEPSPs amplitudes depend mainly on the number of activated sensory neurons. Compound EPSPs depend also on frequency and the number of APs in the bursts occurring in a single neuron. Presynaptic APs having frequency 2-10 Hz evoke high frequency depression of that eEPSPs after an interval is followed by post-tetanic potentiation of single eEPSPs. Preceding stimulation of a pneumostom area facilitates the cEPSPs elicited by repeated stimulation of viscera. The eEPSPs from the same visceral area demonstrate no heterosynaptic facilitation in experiments with double parallel intracellular recording from responsive sensory and command neurons. The different types of the eEPSPs plasticity are discussed according to their contribution cEPSPs plastic changes.  相似文献   

13.
实验在66只麻醉、制动,断双侧颈迷走神经和人工通气的家兔上进行。通过微量注射神经元胞体兴奋剂谷氨酸钠和神经元胞体抑制剂甘氨酸,改变孤束核腹外侧区神经元兴奋活动,探讨对下丘脑弓状核诱发电位的影响及其可能的机制和意义。实验结果如下:(1)孤束核腹外侧区微量注射谷氨酸钠,可使膈神经放电显著增加和使弓状核诱发电位P2及N2波幅显著降低;而微量注射甘氨酸则使膈神经放电显著减少和使弓状核诱发电位P2及N2波幅显著增大。(2)静脉注射纳洛酮对谷氨酸钠引起的膈神经放电兴奋效应无明显影响,但能翻转谷氨酸钠对弓状核诱发电位P2及N2波幅的抑制效应。提示:孤束核腹外侧区呼吸神经元的兴奋活动可扩散至弓状核,并对弓状核诱发电位产生影响,此影响可能是由内源性阿片系统参与而实现的。  相似文献   

14.
Modulation of the Aplysia gill withdrawal reflex by dopamine   总被引:2,自引:0,他引:2  
The ability of dopamine to modulate gill contractions was tested in Aplysia. When dopamine was perfused through the gill vasculature, gill contractions caused by siphon stimulation (gill withdrawal reflex) and by depolarization of the gill motor neuron L7 were increased in amplitude, as compared with those evoked during seawater perfusion. Habituation of gill movements, brought about by repetitive stimulation of the siphon or of L7, was prevented by dopamine. Despite the absence of reflex habituation, the number of action potentials in central gill motor neurons, evoked by siphon stimulation, showed normal decrement. Dopamine's effects were blocked when the ctenidial nerve was cut or when L7 hyperpolarized. These data suggest that dopamine acts peripherally to increase the efficacy of L7's synaptic transmission onto gill muscle or elements of the gill neural plexus.  相似文献   

15.
In experiments on the preparation of a frog perfused brain, using recording of intracellular potentials the vestibulospinal neurons were identified on the basis of excitatory postsynaptic potentials evoked by the stimulation of the ipsilateral vestibular nerve and antidromic activation from the stimulation of the cervical and lumbar enlargements of the spinal cord. The average conduction velocity determined for axons of C neurons was 10.67 m/s and for L neurons 15.84 m/s. The ratio of C and L neurons over the vestibular nuclear complex was very stimular to each other: 52% C neurons and 48% L neurons. The majority of both types of neurons were localized in the lateral vestibular nucleus (58.6%), to the lesser extent in the descending vestibular nucleus (30.7%) and very little in the medial vestibular nucleus (10.6%). Fast and slow cells were detected among the vestibulospinal neurons. The fast neurons of L cells did not prevail greatly over the slow ones, whereas the slow neurons of C cells prevailed comparatively largely over the fast neurons. Thus, it became possible to reconstruct spatial distribution of the identified vestibulospinal neurons. The results of spatial distribution of C and L vestibulospinal neurons in the frogs failed to conform to definite somatotopy, which is characteristic for mammalian vestibular nuclei. C and L neurons in the frog's vestibular nuclei as a source of vestibulospinal fibres, are scattered separately or more frequently in groups, so that they establish a "patch-like" somatotopy and do not form a distinctly designed fields as in mammals.  相似文献   

16.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

17.
A brief high-frequency stimulation of the anal nerve of the isolated nerve ring of snail Helix induced a pronounced increase in the amplitude of EPSPs, evoked in identified neurons of left parietal and visceral ganglions by low frequency (once in 5 min) stimulation of the same nerve. The amplitude of EPSP returned to the control level 30-120 min after tetanization. We called this effect long-term potentiation. A brief application of serotonin (10 microM) in the majority of neurons also induced lasting either 15-30 min or more than 2 hours facilitation of EPSP, evoked by anal nerve stimulation. Intracellular cAMP injections, being without effect on EPSP amplitude in many neurons, in certain neurons caused an increase in EPSP amplitude, lasting up to 30 min. It is suggested that the 3 factors shown to increase synaptic efficiency in molluscan neurons may have common mechanisms of action.  相似文献   

18.
The effects of stimulation of the vestibular nerve and five different cerebral cortex areas on the neuronal activity of the lateral vestibular nucleus of Deiters were studied. Stimulation of the cerebral cortex is shown to lead to antidromic and synaptic activation of Deiters neurons. The synaptic potentials of Deiters neurons evoked from the cerebral cortex were of mono- and polysynaptic origin. In particular, stimulation of the cerebral cortex evoked in Deiters neurons mono- and polysynaptic excitatory postsynaptic potentials. Collaterals of vestibulospinal neurons reaching different cortex fields as well as convergence of influences from these cortex fields on Deiters neurons were revealed. Inhibitory effects of the cerebral cortex on Deiters neurons were of polysynaptic origin and occurred rarely. The topical correlation between Deiters nucleus and different areas of the cerebral cortex was found. The peculiarities and functional significance of the effects obtained are discussed.  相似文献   

19.
The synaptic plasticity is a background for learning and memory. Identifiable synapses that are the synapses between individually identifiable neurons are a very convenient model for studying plasticity. Synapses between the interoceptive mechanosensory neurons and the command neurons of the withdrawal behavior were identified in the Helix lucorum brain. It was shown that synaptic plasticity estimated by the dynamics of the elementary postsynaptic potentials elicited by single presynaptic spikes differed from the synaptic plasticity estimated by the dynamics of compound synaptic responses of the same neurons to sensory stimulation. Habituation and heterosynaptic facilitation phenomena are discussed in terms of the dynamics of the elementary postsynaptic potentials.  相似文献   

20.
1. Coexistence of FMRFamide, met-enkephalin and serotonin immunoreactivities was examined in Achatina fulica and Aplysia kurodai. 2. Coexistence of FMRFamide and serotonin was found in some neurons of the visceral, right parietal and pedal ganglia of Achatina fulica, and in the pedal ganglion of Aplysia kurodai. 3. In Achatina fulica, coexistence of FMRFamide and met-enkephalin was found in a neuron of the left parietal ganglion and that of met-enkephalin and serotonin was found in a giant neuron of the right parietal ganglion. 4. Based on these results, the biological significance of coexistence was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号