首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the plasma membrane potential delta psi p on the transport rate and steady state distribution of Li+ was assessed in rat cortical synaptosomes. Up to 15 mM Li+ failed to saturate Li+ influx into polarized synaptosomes in a Na+-based medium with 3 mM external K+. Veratridine increased and tetrodotoxin, ouabain, or high external K+ decreased the rate of Li+ influx. At steady state, Li+ was concentrated about 3-fold in resting synaptosomes at 0.3 to 1 mM Li+ externally. Subsequent depolarization of the plasma membrane by veratridine or high external K+ induced an immediate release of Li+. When graded depolarizations were imposed onto the plasma membrane by varying concentrations of ouabain, veratridine, or external K+, steady state distribution of Li+ was linearly related with K+ distribution or electrochemical activity coefficients. It was concluded that uptake rate and steady state distribution of Li+ depend significantly on delta psi p. However, Li+ gradients were lower than predicted from delta psi p, suggesting that (secondary) active transport systems counteracted passive equilibration by uphill extrusion of Li+. The electrochemical potential difference delta mu Li+ maintained at a delta psi p of -72 mV was calculated to 4.2 kJ/mol of Li+. At physiological external K+, Li+ was not actively transported by the sodium pump. The ouabain sensitivity resulted from the coupling of Li+ uptake to the pump-dependent K+ diffusion potential. In low K+ and K+-free media, however, active transport of Li+ by the sodium pump contributed to total uptake. In the absence of K+, Li+ substituted for K+ in generating a delta psi p of -64 mV maximally, as calculated from TPMP+ distribution at 40 mM external Li+. Since Li+ gradients were far too low to account for a diffusion potential, it was assumed that Li+ gave rise to an electrogenic pump potential.  相似文献   

2.
The diffusion and electrogenic components of the resting potential of hypoxic ventricular muscle were separated by inhibition of the sodium pump with 10(-4) M ouabain. The response to varying external K concentrations (Ko) was studied. Arterially perfused rabbit hearts were submitted to 60 min hypoxia in Krebs solution containing 5 mM K throughout or to different external K concentrations during the last 20 min of hypoxia. For K concentrations between 1.5 and 10 mM, hypoxia did not change the resting potential except for a slight hyperpolarization in 7.5 mM K. The diffusion component of the resting potential did not differ from the resting potential at Ko less than 5 mM. An electrogenic potential of -3 to -6 mV was detectable at Ko values between 5 and 10 mM. The internal K concentration, Ki, was estimated from extrapolations to zero potential of the relation resting potential vs. Ko in normoxic and hypoxic hearts. These experiments revealed a decline of Ki of 16 mM with hypoxia. The variation of the diffusion potential with external K was fitted by a PNa:PK ratio five times lower than in normoxia. It has been concluded that an increase in K permeability and the persistence of electrogenic Na extrusion during hypoxia of rather short duration prevent membrane depolarization despite the myocardial K loss.  相似文献   

3.
The effects of hyperthermia (41-43 degrees C) on the membrane potential (calculated from the transmembrane distribution of [3H]tetraphenylphosphonium) and Na+ transport of Chinese hamster V79 fibroblasts were studied. At 41 degrees C, hyperthermia induced a membrane hyperpolarization of log phase cells (5 to 26 mV) that was reversible upon returning to 37 degrees C. The hyperpolarization was inhibited 50% by 1 mM ouabain or 0.25 mM amiloride, an inhibitor of Na+:H+ exchange. Shifting temperature to 41 degrees C increased ouabain-sensitive Rb+ uptake indicating activation of the electrogenic Na+ pump. At 43 degrees C for 60 min, the membrane potential of log phase cells depolarized (20-35 mV). Parallel studies demonstrated enhanced Na+ uptake at 41 degrees C only in the presence of ouabain. At 43 degrees C, Na+ uptake was increased relative to controls with or without ouabain present. At both 41 and 43 degrees C, 0.25 mM amiloride inhibited heat-stimulated Na+ uptake. Na+ efflux was enhanced at 41 degrees C in a process inhibited by ouabain. Thus, one consequence of heat treatment at 41 degrees C is activation of Na+:H+ exchange with the resultant increase in cytosolic [Na+] activating the electrogenic Na+ pump. At temperatures greater than or equal to 43 degrees C, the Na+ pump is inhibited.  相似文献   

4.
In rat small intestine, the active transport of organic solutes results in significant depolarization of the membrane potential measured in an epithelial cell with respect to a grounded mucosal solution and in an increase in the transepithelial potential difference. According to the analysis with an equivalent circuit model for the epithelium, the changes in emf's of mucosal and serosal membranes induced by active solute transport were calculated using the measured conductive parameters. The result indicates that the mucosal cell membrane depolarizes while the serosal cell membrane remarkably hyperpolarizes on the active solute transport. Corresponding results are derived from the calculations of emf's in a variety of intestines, using the data that have hitherto been reported. The hyperpolarization of serosal membrane induced by the active solute transport might be ascribed to activation of the serosal electrogenic sodium pump. In an attempt to determine the causative factors in mucosal membrane depolarization during active solute transport, cell water contents and ion concentrations were measured. The cell water content remarkably increased and, at the same time, intracellular monovalent ion concentrations significantly decreased with glucose transport. Net gain of glucose within the cell was estimated from the restraint of osmotic balance between intracellular and extracellular fluids. In contrast to the apparent decreases in intracellular Na+ and K+ concentrations, significant gains of Na+ and K+ occurred with glucose transport. The quantitative relationships among net gains of Na+, K+ and glucose during active glucose transport suggest that the coupling ratio between glucose and Na+ entry by the carrier mechanism on the mucosal membrane is approximately 1:1 and the coupling ratio between Na+-efflux and K+-influx of the serosal electrogenic sodium pump is approximately 4:3 in rat small intestine. In addition to the electrogenic ternary complex inflow across the mucosal cell membrane, the decreases in intracellular monovalent ion concentrations, the temporary formation of an osmotic pressure gradient across the cell membrane and the streaming potential induced by water inflow through negatively charged pores of the cell membrane in the course of an active solute transport in intestinal epithelial cells are apparently all possible causes of mucosal membrane depolarization.  相似文献   

5.
Plasma membrane potential of neutrophils generated by the Na+ pump   总被引:3,自引:0,他引:3  
The plasma membrane potential of human neutrophils was monitored using the anionic dye oxonol-V. The cells maintain a potential of -75 +/- 17 mV when suspended in physiological saline solutions. The cells are scarcely depolarized by extracellular K+ and the depolarization induced by the chemotactic peptide fMet-Leu-Phe is of similar magnitude for cells suspended in 5 or 155 mM K+. Neutrophils are, however, depolarized by suspension in K+-free media or after treatment with ouabain. Neutrophils catalyse Na+-H+ exchange and possess other electroneutral ion transport systems. We propose that the neutrophil membrane potential is generated by an electrogenic Na+ pump, that osmotic stability is achieved by electroneutral ion transport systems and that electrical stability is maintained by anion leakage. Similar mechanisms may also operate in other biological membranes.  相似文献   

6.
The uptake mechanism for the bile salt, taurocholate, by the liver cell is coupled to sodium but the stoichiometry is controversial. A one-to-one coupling ratio would result in electroneutral transport, whereas cotransport of more than one sodium ion with each taurocholate molecule cause an electrogenic response. To better define the uptake of this bile salt, we measured the effect of taurocholate on the membrane potential and resistance of isolated rat hepatocytes using conventional microelectrode electrophysiology. The addition of 20 microM taurocholate caused transient but significant depolarization accompanied by a significant decrease in membrane resistance. The electrical effect induced by taurocholate mimicked that induced by L-alanine (10 mM), the uptake of which is known to occur through an electrogenic, sodium-coupled mechanism. The sodium dependence of taurocholate-induced depolarization was further confirmed by: (1) replacing Na+ with choline +, and (2) preincubating cells with ouabain (2 mM) or with the Na+-ionophore, gramicidin (25 micrograms/ml); both suppressed the electrogenic response. Further, cholic acid, which inhibits sodium-coupled taurocholate uptake in hepatocytes, inhibited taurocholate evoked depolarization. These results support the hypothesis that sodium-coupled taurocholate uptake by isolated hepatocytes occurs through an electrogenic process which transports more than one Na+ with each taurocholate molecule.  相似文献   

7.
In general, increasing K+ on the nutrient side decreases the transmucosal PD (nutrient becomes more negative) but after bathing the mucosa in zero K+ media for about 30 min, or longer, elevation of K+ on the nutrient side increases the PD, an anomalous effect. In Cl- media, increasing nutrient K+ from zero to 4 mM produces an increase in PD (an anomalous response) of 3.1 and 5.3 mV in 2 and 5 min, respectively. Ouabain (10(-3) M) to the nutrient side abolished the anomalous response as did removal of Na+ (choline for Na+) from bathing media. In SO4(2-) media (SO4(2-) for Cl-), a significant anomalous PD response was observed when K+ on the nutrient side was increased from zero to 1, 2 or 3 mM but not to higher K+ concentrations. In this case, ouabain also abolished the anomalous response. It is postulated, on the basis of the effects of ouabain and the use of choline media, that an electrogenic (Na+ + K+)-ATPase pump is present on the nutrient-facing membrane in which more Na+ than K+ are transported per cycle.  相似文献   

8.
An increase in aqueous K+ from 0 to 4 mM increased the potential difference (anomalous response of electrogenic (Na+ + K+)-ATPase antiport) by 1.1 mV in Cl(-)-free solutions compared to 6.8 mV in Cl- solutions. With amphotericin B added to the tear solution in Cl(-)-free solutions, the anomalous PD response for the addition of 4 mM K+ to the aqueous solution was about 20 mV, significantly greater than in Cl- solutions. This anomalous response was inhibited by ouabain. These data support the electrogenicity of the (Na+ + K+)-ATPase pump. It is also evident that, for the pump to respond, Na+ should readily enter the cell. This may be accomplished experimentally, either across the basolateral membrane in Cl- solutions or across the apical membrane in Cl(-)-free solutions with amphotericin B present in the tear solution.  相似文献   

9.
To study the properties of the Na extrusion mechanism, giant muscle fibers from barnacle (Balanus nubilus) were internally perfused with solutions containing tracer 22Na. In fibers perfused with solutions containing adenosine 5'-triphosphate (ATP) and 30 mM Na, the Na efflux into 10 mM K seawater was approximately 25-30 pmol/cm2.s; 70% of this efflux was blocked by 50-100 microM ouabain, and approximately 30% was blocked by removal of external K. The ouabain-sensitive and K-dependent Na effluxes were abolished by depletion of internal ATP and were sigmoid-shaped functions of the internal Na concentration ([Na]i), with half-maxima at [Na]i approximately or equal to 20 mM. These sigmoid functions fit the Hill equation with Hill coefficients of approximately 3.5. Ouabain depolarized ATP-fueled fibers by 1.5-2 mV ([Na]i greater than or equal to 30 mM) but had very little effect on the membrane potential of ATP-depleted fibers; ATP depletion itself caused a 2-2.5- mV depolarization. When fueled fibers were treated with 3,4- diaminopyridine or Ba2+ (to reduce the K conductance and increase membrane resistance), application of ouabain produced a 4-5 mV depolarization. These results indicate that an electrogenic, ATP- dependent Na-K exchange pump is functional in internally perfused fibers; the internal perfusion technique provides a convenient method for performing transport studies that require good intracellular solute control.  相似文献   

10.
Electrical and biochemical properties of an enzyme model of the sodium pump   总被引:5,自引:0,他引:5  
The electrochemical properties of a widely accepted six-step reaction scheme for the Na+, K+-ATPase have been studied by computer simulation. Rate coefficients were chosen to fit the nonvectorial biochemical data for the isolated enzyme and a current-voltage (I-V) relation consistent with physiological observations was obtained with voltage dependence restricted to one (but not both) of the two translocational steps. The vectorial properties resulting from these choices were consistent with physiological activation of the electrogenic sodium pump by intracellular and extracellular sodium (Na+) and potassium (K+) ions. The model exhibited K+/K+ exchange but little Na+/Na+ exchange unless the energy available from the splitting of adenosine triphosphate (ATP) was reduced, mimicking the behavior seen in squid giant axon. The vectorial ionic activation curves were voltage dependent, resulting in large shifts in apparent Km's with depolarization. At potentials more negative than the equilibrium or reversal potential transport was greatly diminished unless the free energy of ATP splitting was reduced. While the pump reversal potential is at least 100 mV hyperpolarized relative to the resting potential of most cells, the voltage-dependent distribution of intermediate forms of the enzyme allows the possibility of considerable slope conductance of the pump I-V relation in the physiological range of membrane potentials. Some of the vectorial properties of an electrogenic sodium pump appear to be inescapable consequences of the nonvectorial properties of the isolated enzyme. Future application of this approach should allow rigorous quantitative testing of interpretative ideas concerning the mechanism and stoichiometry of the sodium pump.  相似文献   

11.
Na-K pump current in the Amphiuma collecting tubule   总被引:4,自引:2,他引:2       下载免费PDF全文
There is strong evidence supporting the hypothesis of an electrogenic Na-K pump in the basolateral membrane of several epithelia. Thermodynamic considerations and results in nonepithelial cells indicate that the current carried by the pump could be voltage dependent. In order to measure the pump current and to determine its voltage dependence in a tight epithelium, we have used the isolated perfused collecting tubule of Amphiuma and developed a technique for clamping the basolateral membrane potential (Vbl) through transepithelial current injection. The transcellular current was calculated by subtracting the paracellular current (calculated from the transepithelial conductance measured in the presence of luminal amiloride) from the total transepithelial current. Basolateral membrane current-voltage (I-V) curves were obtained in conditions where the ratio of the pump current to the total basolateral membrane current had been maximized by loading the cells with Na+ (exposure to low-K+ bath), and by blocking the basolateral K+ conductance with barium. The pump current was defined as the difference of the current across the basolateral membrane measured before and 10-15 s after the addition of strophanthidin (20 microM) to the bath solution. With a bath solution containing 3 mM K+, the pump current was nearly constant in the Vbl range of -20 to -80 mV (52 +/- 5 microA.cm-2 at -60 mV) but showed a marked voltage dependence at higher negative Vbl (pump current decreased to 5 +/- 9 microA.cm-2 at -180 mV). In a 1.0 mM K bath, the shape of the pump I-V curve was similar but the amplitude of the current was decreased (24 +/- 4 microA.cm-2 at -60 mV). In a 0.1 mM K bath, the pump current was not significantly different from 0. Our results indicate that the basolateral Na-K pump generates a current which depends on the extracellular potassium concentration. With physiological peritubular concentration of K+ and in the physiological range of potential, the pump activity, measured as the pump-generated current, was independent of the membrane potential.  相似文献   

12.
Vesicles containing a purified shark rectal gland (sodium + potassium)-activated adenosine triphosphatase-(NaK ATPase) were prepared by dialyzing for 2 days egg lecithin, cholate, and the NaK ATPase purified from the rectal gland of Squalus acanthias. These vesicles were capable of both Na+ and K+ transport. Studies of K+ transport were made by measuring the ATP-stimulated transport outward of 42K+ or 86Rb+. Vesicles were preloaded with isotope by equilibration at 4 degrees for 1 to 3 days. Transport of 42K+ or 86Rb+ was initiated by addition of MgATP to the vesicles. The ATP-dependent exit of either isotope was the same. Experiments are presented which show that this loss of isotope was not due to changes in ion binding but rather due to a loss in the amount of ion trapped in the vesicular volume. The transport of K+ was dependent on external Mg2+. CTP was almost as effective as ATP in stimulating K+ transport, while UTP was relatively ineffective. These effects of nucleotides parallel their effects on Na+ accumulation and their effectiveness as substrates for the enzyme. Potassium transport was inhibited by ouabain and required the presence of Na+. The following asymmetries were seen: (a) addition of external Mg2+ supported K+ transport; (b) ouabain inhibited K+ transport only if it was present inside the vesicles; (c) addition of external Na+ to the vesicles stimulated K+ transport. External Li+ was ineffective as a Na+ substitute. The specific requirement of external Na+ for K+ transport indicates that K+ exit is coupled to Na+ entry. Changes in the internal vesicular ion concentrations were studied with vesicles prepared in 20 mM NaCl and 50 mM KCl. After 1 hour of transport at 25 degrees, a typical Na+ concentration in the vesicles in the presence of ATP was 72 mM. A typical K+ concentration in the vesicles was 10 mM as measured with 42K+ or 6 mM as measured with 86Rb+. The following relationships have been calculated for Na+ transport, K+ transport and ATP hydrolysis: Na+/ATP = 1.42, K+/ATP =1.04, and Na+/K+ = 1.43. The ratio of 2.8 Na+ transported in to 2 K+ transported out is very close to the value reported for the red cell membrane. Potassium-potassium exchange similar to that observed in the red cell membrane and attributed to the Na+-K+ pump (stimulated by ATP and orthophosphate and inhibited by ouabain) was observed when vesicles were prepared in the absence of Na+. The results reported in this paper prove that the shark rectal gland NaK ATPase, which is 90 to 95% pure, is the isolated pump for the coupled transports of Na+ and K+.  相似文献   

13.
Stimulation by aldosterone of sodium reabsorption can be reproduced on a cell line, A6, derived from the renal tissue of Xenopus laevis. These cells organize themselves as a polarized epithelium carrying out unidirectional sodium transport, reflected by the short-circuit current (Isc). Isc response to aldosterone starts to be apparent after a latency period of 2-3 h; the full hormonal effect takes much longer. On the other hand, (Na+ + K+)-ATPase activity and density in ouabain binding sites did not increase before several hours of treatment. At that stage, while Isc more than trebled, Na+ pump activity and density went up by less than 50%. A significant influence of aldosterone on the way the Na+ pump operates is considered unlikely, since cell interaction with ouabain remained unchanged (Kd approximately 18 nM). Furthermore, the close correspondence of hormonal effect, in relative terms, on (Na+ + K+)-ATPase activity vs density, argues against a significant degree of recruitment of spare pump units. Thus aldosterone effect on Na+ pump probably results from increased biosynthesis of the enzyme. The aldosterone dependent Na+ pump stimulation is apparently unrelated to sodium available for transport. The hormone seems to act on Na+ pump directly.  相似文献   

14.
In a previous study, the amiloride-induced corner frequency (fc) was found to decrease as apical sodium was increased. This effect was small or absent when the basolateral surface was exposed to high potassium. It has been suggested that the apical sodium effect may be indirect, due either to increased intracellular [Na+] which repelled amiloride or to an increased potential at the apical surface which reduced amiloride affinity. High basolateral K+ might then suppress the sodium effect either by preventing intracellular [Na+] from increasing or by allowing a better clamp of the apical membrane potential by reducing basolateral membrane resistance and potential. We checked the effects of basolateral [K+], of cyanide and of ouabain at concentrations known to increase intracellular [Na+]. We found only negligible effects on fc. In addition, amphotericin B added to the basolateral bathing solution either in 115 mM Na+ or in 120 mM K+ had no significant effect on fc. We found that relatively wide variation in clamp potential under all conditions, even with active transport severely inhibited, left fc virtually constant. Since the amiloride kinetics were independent of clamp potential, we were able to measure paracellular and transcellular conductances separately by examining the voltage dependence of clamp current (linear) and amiloride noise power (quadratic). This made possible estimation of channel density and single-channel current.  相似文献   

15.
Net taurine transport across the frog retinal pigment epithelium-choroid was measured as a function of extracellular potassium concentration, [K+]o. The net rate of retina-to-choroid transport increased monotonically as [K+]o increased from 0.2 mM to 2 mM on the apical (neural retinal) side of the tissue. No further increase was observed when [k+]o was elevated to 5 mM. The [K+]o changes that modulate taurine transport approximate the light-induced [K+]o changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium. The taurine-potassium interaction was studied by using rubidium as a substitute for potassium and measuring active rubidium transport as a function of extracellular taurine concentration. An increase in apical taurine concentration, from 0.2 mM to 2 mM, produced a threefold increase in active rubidium transport, retina to choroid. Net taurine transport can also be altered by relatively large, 55 mM, changes in [Na+]o. Apical ouabain, 10(-4) M, inhibited active taurine, rubidium, and potassium transport; in the case of taurine, this inhibition is most likely due to a decrease in the sodium electrochemical gradient. In sum, these results suggest that the apical membrane contains a taurine, sodium co-transport mechanism whose rate is modulated, indirectly, through the sodium pump. This pump has previously been shown to be electrogenic and located on the apical membrane, and its rate is modulated, indirectly, by the taurine co-transport mechanism.  相似文献   

16.
17.
Microdissected, beta-cell-rich pancreatic islets from ob/ob mice were used in studies of 86Rb+ transport. D-Glucose (20 mM) induced a biphasic reduction in 86Rb+ efflux. The reduction stabilized within 10 min at 34% of the efflux rate at zero glucose. The initial 86Rb+ uptake (5 min) was dose-dependently reduced by ouabain with maximum inhibition at 1 mM. D-Glucose (20 mM) did not affect the ouabain-sensitive 86Rb+ influx but markedly reduced (48%) the ouabain-resistant isotope influx. The results suggest that D-glucose does not affect the Na+/K+ pump in pancreatic beta-cells and that the glucose-sensitive K+-transporting modalities (K+ channels) in the beta-cells can mediate both inward and outward K+ flux.  相似文献   

18.
The effect of pH on electrogenic sodium transport by the Na+,K+-ATPase has been studied. Experiments were carried out by admittance recording in a model system consisting of a bilayer lipid membrane with adsorbed membrane fragments containing purified Na+,K+-ATPase. Changes in the membrane admittance (capacitance and conductance increments in response to photo-induced release of ATP from caged ATP) were measured as function of AC voltage frequency, sodium ion concentration, and pH. In solutions containing 150 mM Na+, the frequency dependence of capacitance increments was not significantly dependent on pH in the range between 6 and 8. At a low NaCl concentration (3 mM), the capacitance increments at low frequencies decreased with the increasing pH. In the absence of NaCl, the frequency-dependent capacitance increment at low frequencies was similar to that measured in the presence of 3 mM NaCl. These results may be explained by involvement of protons in the Na+,K+-ATPase pump cycle, i.e., electroneutral exchange of sodium ions for protons under physiological conditions, electrogenic transport of sodium ions at high pH, and electrogenic transport of protons at low concentrations (and in the absence) of sodium ions.  相似文献   

19.
The role of Na-K ATPase in the determination of resting membrane potential (Em) as a function of extracellular K ion concentration was investigated in cultured rat myotubes. The Em of control myotubes at 37 degrees C varied as a function of (K+)0 with a slope of about 58-60 mV per ten-fold change in (K+)0. Inhibition of the Na-K pump with ouabain or by reduced temperature revealed that this relation consists of two components. One, between (K+)0 of 10 and 100 mM, remains unchanged by alterations in enzyme activity; The second, between (K+)0 of 1 and 10 mM, is related to the amount of Na-K pump activity, the slope decreasing as pump activity decreases. Indeed, with complete inhibition of the Na-K pump, Em does not change over the range of (K+)0 1 to 10 mM. Measurements of 86Rb efflux and input resistance of individual myotubes showed that membrane permeability does not change as (K+)0 increases from 1 to 10 mM but increases as (K+)0 increases further. Monensin, which increases Na ion permeability, increases Em at values of external K+ below 10 mM, and is without effect at higher values of K+ concentration. The effect of monensin is blocked by ouabain. Tetrodotoxin, which blocks voltage-dependent Na+ channels, decreases Em at low (2-10 mM) K+. We conclude that changes in Em as a function of extracellular K+ concentration in the physiological range are not adequately explained by the diffusion potential hypothesis of Em, and that other theories (electrogenic pump, surface-absorption) must be considered.  相似文献   

20.
The voltage dependence of steady state current produced by the forward mode of operation of the endogenous electrogenic Na+/K+ pump in Na(+)- loaded Xenopus oocytes has been examined using a two-microelectrode voltage clamp technique. Four experimental cases (in a total of 18 different experimental conditions) were explored: variation of external [Na+] ([Na]o) at saturating (10 mM) external [K+] ([K]o), and activation of pump current by various [K]o at 0, 15, and 120 mM [Na]o (tetramethylammonium replacement). Ionic current through K+ channels was blocked by Ba2+ (5 mM) and tetraethylammonium (20 mM), thereby allowing pump-mediated current to be measured by addition or removal of external K+. Control measurements and corrections were made for pump current run-down and holding current drift. Additional controls were done to estimate the magnitude of the inwardly directed pump-mediated current that was present in K(+)-free solution and the residual K(+)- channel current. A pseudo two-state access channel model is described in the Appendix in which only the pseudo first-order rate coefficients for binding of external Na+ and K+ are assumed to be voltage dependent and all transitions between states in the Na+/K+ pump cycle are assumed to be voltage independent. Any three-state or higher order model with only two oppositely directed voltage-dependent rate coefficients can be reduced to an equivalent pseudo two-state model. The steady state current-voltage (I-V) equations derived from the model for each case were simultaneously fit to the I-V data for all four experimental cases and yielded least-squares estimates of the model parameters. The apparent fractional depth of the external access channel for Na+ is 0.486 +/- 0.010; for K+ it is 0.256 +/- 0.009. The Hill coefficient for Na+ is 2.18 +/- 0.06, and the Hill coefficient for K+ (which is dependent on [Na]o) ranges from 0.581 +/- 0.019 to 1.35 +/- 0.034 for 0 and 120 mM [Na]o, respectively. The model provides a reasonable fit to the data and supports the hypothesis that under conditions of saturating internal [Na+], the principal voltage dependence of the Na+/K+ pump cycle is a consequence of the existence of an external high- field access channel in the pump molecule through which Na+ and K+ ions must pass in order to reach their binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号