首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A mouse L cell line containing the centromeric insertion of herpes thymidine kinase genes (tk) was previously shown to undergo a high frequency of DNA rearrangement at the site of tk insertion. Analysis of TK- revertants had demonstrated that DNA rearrangements were usually associated with DNA deletion and were always mediated by intrachromosomal recombinations. In this study, we further analyzed several TK+ subclones to examine the mode of DNA rearrangements in the absence of negative selection pressure. In two clones, LC2-3F and LC2-3E17, rearrangements were accompanied by DNA amplification and were mediated by intrachromosomal recombination. In subclone LC2-3E17-19, we further detected perturbations in the pattern of centromeric heterochromatization. This was associated with chromosome instability, as evidenced by chromosome breakage at the centromere. The analysis of three other sibling clones, LC2-3, LC2-6 and LC2-15, further suggests that reciprocal recombination events may play a role in such centromeric rearrangements. These results suggest that DNA rearrangements in the centromere may be mediated by a number of different mechanisms, and generally do not affect chromosome stability except when accompanied by changes in the pattern of heterochromatization.  相似文献   

3.
Mycoplasma bovis, an important pathogen of cattle, was recently shown to possess a family of phase- and size-variable membrane surface lipoprotein antigens (Vsps). These proteins spontaneously undergo noncoordinate phase variation between ON and OFF expression states, generating surface antigenic variation. In the present study, we show that the spontaneously high rate of Vsp phenotypic switching involves DNA rearrangements that occur at high frequency in the M. bovis chromosome. A 1.5-kb HindIII genomic fragment carrying the vspA gene from M. bovis PG45 was cloned and sequenced. The deduced VspA amino acid sequence revealed that 80% of the VspA molecule is composed of reiterated intragenic coding sequences, creating a periodic polypeptide structure. Four distinct internal regions of repetitive sequences in the form of in-tandem blocks extending from the N-terminal to the C-terminal portion of the Vsp product were identified. Southern blot analysis of phenotypically switched isogenic lineages representing ON or OFF phase states of Vsp products suggested that changes in the Vsp expression profile were associated with detectable changes at the DNA level. By using a synthetic oligonucleotide representing a sequence complementary to the repetitive vspA gene region as a probe, we could identify the vspA-bearing restriction fragment undergoing high-frequency reversible rearrangements during oscillating phase transition of vspA. The 1.5-kb HindIII fragment carrying the vspA gene (on state) rearranged and produced a 2.3-kb HindIII fragment (OFF state) and vice versa. Two newly discovered vsp genes (vspE and vspF) were localized on two HindIII fragments flanking the vsp gene upstream and downstream. Southern blot hybridization with vspE- and vspF-specific oligonucleotides as probes against genomic DNA of VspA phase variants showed that the organization and size of the fragments adjacent to the vspA gene remained unchanged during VspA ON-OFF switching. The mechanisms regulating the vsp genes are yet unknown; our findings suggest that a recombinative mechanism possibly involving DNA inversions, DNA insertion, or mobile genetic elements may play a role in generating the observed high-frequency DNA rearrangements.  相似文献   

4.
Major lipoprotein antigens, known as variable membrane surface lipoproteins (Vsps), on the surface of the bovine pathogen Mycoplasma bovis were shown to spontaneously undergo noncoordinate phase variation between ON and OFF expression states. The high rate of Vsp phenotypic switching was also shown to be linked with DNA rearrangements that occur at high frequency in the M. bovis chromosome (I. Lysnyansky, R. Rosengarten, and D. Yogev, J. Bacteriol. 178:5395-5401, 1996). In the present study, 13 single-copy vsp genes organized in a chromosomal cluster were identified and characterized. All vsp genes encode highly conserved N-terminal domains for membrane insertion and lipoprotein processing but divergent mature Vsp proteins. About 80% of each vsp coding region is composed of reiterated coding sequences that create a periodic polypeptide structure. Eighteen distinct repetitive domains of different lengths and amino acid sequences are distributed within the products of the various vsp genes that are subject to size variation due to spontaneous insertions or deletions of these periodic units. Some of these repeats were found to be present in only one Vsp family member, whereas other repeats recurred at variable locations in several Vsps. Each vsp gene is also 5' linked to a highly homologous upstream region composed of two internal cassettes. The findings that rearrangement events are associated with Vsp phenotypic switching and that multiple regions of high sequence similarity are present upstream of the vsp genes and within the vsp coding regions suggest that modulation of the Vsp antigenic repertoire is determined by recombination processes that occur at a high frequency within the vsp locus of M. bovis.  相似文献   

5.
Site-specific DNA invertible elements often control the production of bacterial surface proteins that are subject to phase variation (ON/OFF switching). Inversion of the DNA element occurs as a result of the reciprocal exchange of DNA catalysed by a specialized enzyme (recombinase) that acts at specific sites. By continually switching the orientation of the invertible element in the chromosome, and consequently the production of the variable protein(s), the cell population remains continually responsive to environmental change such as immunological challenge. In addition to phase-variable surface proteins, Mycoplasma pulmonis has a family of phase-variable restriction-modification enzymes. We report here that a single recombinase in M. pulmonis, HvsR, catalyses independent DNA inversions at non-homologous loci, causing variations in surface lipoproteins and in the DNA recognition sequence specificity of restriction enzymes. Thus, HvsR is a site-specific DNA recombinase with dual substrate specificity.  相似文献   

6.
Branzei D 《FEBS letters》2011,585(18):2810-2817
Homologous recombination plays an important role in the maintenance of genome integrity. Arrested forks and DNA lesions trigger strand annealing events, called template switching, which can provide for accurate damage bypass, but can also lead to chromosome rearrangements. Advances have been made in understanding the underlying mechanisms for these events and in elucidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged as key players in regulating damage-induced template switching. Here I review the biological significance of template switching at the nexus of DNA replication and recombination, and the role of ubiquitin-like modifications in mediating and controlling this process.  相似文献   

7.
SUMO conjugation is a key regulator of the cellular response to DNA replication stress, acting in part to control recombination at stalled DNA replication forks. Here we examine recombination-related phenotypes in yeast mutants defective for the SUMO de-conjugating/chain-editing enzyme Ulp2p. We find that spontaneous recombination is elevated in ulp2 strains and that recombination DNA repair is essential for ulp2 survival. In contrast to other SUMO pathway mutants, however, the frequency of spontaneous chromosome rearrangements is markedly reduced in ulp2 strains, and some types of rearrangements arising through recombination can apparently not be tolerated. In investigating the basis for this, we find DNA repair foci do not disassemble in ulp2 cells during recovery from the replication fork-blocking drug methyl methanesulfonate (MMS), corresponding with an accumulation of X-shaped recombination intermediates. ulp2 cells satisfy the DNA damage checkpoint during MMS recovery and commit to chromosome segregation with similar kinetics to wild-type cells. However, sister chromatids fail to disjoin, resulting in abortive chromosome segregation and cell lethality. This chromosome segregation defect can be rescued by overproducing the anti-recombinase Srs2p, indicating that recombination plays an underlying causal role in blocking chromatid separation. Overall, our results are consistent with a role for Ulp2p in preventing the formation of DNA lesions that must be repaired through recombination. At the same time, Ulp2p is also required to either suppress or resolve recombination-induced attachments between sister chromatids. These opposing defects may synergize to greatly increase the toxicity of DNA replication stress.  相似文献   

8.
DNA double-strand breaks (DSBs) may be caused by normal metabolic processes or exogenous DNA damaging agents and can promote chromosomal rearrangements, including translocations, deletions, or chromosome loss. In mammalian cells, both homologous recombination and nonhomologous end joining (NHEJ) are important DSB repair pathways for the maintenance of genomic stability. Using a mouse embryonic stem cell system, we previously demonstrated that a DSB in one chromosome can be repaired by recombination with a homologous sequence on a heterologous chromosome, without any evidence of genome rearrangements (C. Richardson, M. E. Moynahan, and M. Jasin, Genes Dev., 12:3831-3842, 1998). To determine if genomic integrity would be compromised if homology were constrained, we have now examined interchromosomal recombination between truncated but overlapping gene sequences. Despite these constraints, recombinants were readily recovered when a DSB was introduced into one of the sequences. The overwhelming majority of recombinants showed no evidence of chromosomal rearrangements. Instead, events were initiated by homologous invasion of one chromosome end and completed by NHEJ to the other chromosome end, which remained highly preserved throughout the process. Thus, genomic integrity was maintained by a coupling of homologous and nonhomologous repair pathways. Interestingly, the recombination frequency, although not the structure of the recombinant repair products, was sensitive to the relative orientation of the gene sequences on the interacting chromosomes.  相似文献   

9.
The staphylococcal transposon Tn4001 was introduced into Mycoplasma pulmonis using an Escherichia coli-derived vector by polyethylene glycol-mediated transformation. Using a reaction mixture containing 10 micrograms plasmid DNA, 10 micrograms yeast tRNA, and 34-35% polyethylene glycol per 1 x 10(8) cells, Tn4001 could be introduced into M. pulmonis at a frequency of 5 x 10(-5) per colony forming unit. DNA-DNA hybridization studies illustrated that Tn4001 could occupy a diversity of insertion sites in the M. pulmonis chromosome. These data indicated that Tn4001 is a potentially useful tool for the introduction of mutations and for genetic studies in M. pulmonis.  相似文献   

10.
Epidemiological and clinical evidence suggest a correlation between asthma and infection with atypical bacterial respiratory pathogens. However, the cellular and molecular underpinnings of this correlation remain unclear. Using the T-bet-deficient (T-bet(-/-)) murine model of asthma and the natural murine pathogen Mycoplasma pulmonis, we provide a mechanistic explanation for this correlation. In this study, we demonstrate the capacity of asthmatic airways to facilitate colonization by M. pulmonis and the capacity of M. pulmonis to exacerbate symptoms associated with acute and chronic asthma. This mutual synergism results from an inability of T-bet(-/-) mice to mount an effective immune defense against respiratory infection through release of IFN-gamma and the ability of M. pulmonis to trigger the production of Th2-type cytokines (e.g., IL-4 and IL-5), and Abs (e.g., IgG1, IgE, and IgA), eosinophilia, airway remodeling, and hyperresponsiveness; all pathophysiological hallmarks of asthma. The capacity of respiratory pathogens such as Mycoplasma spp. to dramatically augment the pathological changes associated with asthma likely explains their association with acute asthmatic episodes in juvenile patients and with adult chronic asthmatics, >50% of whom are found to be PCR positive for M. pneumoniae. In conclusion, our study demonstrates that in mice genetically predisposed to asthma, M. pulmonis infection elicits an inflammatory milieu in the lungs that skews the immune response toward the Th2-type, thus exacerbating the pathophysiological changes associated with asthma. For its part, airways exhibiting an asthmatic phenotype provide a fertile environment that promotes colonization by Mycoplasma spp. and one which is ill-equipped to kill and clear respiratory pathogens.  相似文献   

11.
12.
H L Klein 《Genetics》2001,159(4):1501-1509
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.  相似文献   

13.
The frequencies and types of plasmid molecular rearrangements generated in different recombinant mutants which carried two plasmids of the FII incompatibility group were studied. The wild-type cells generated molecular rearrangements mainly by interplasmidic recombination with a frequency of 2.4 x 10(-6) per cell per cell doubling. Cells in which RecF was the principal recombination pathway generated different types of molecular rearrangements that involved either both plasmids or one of the plasmids and the chromosome. The frequencies of molecular rearrangements for these cells were 50-fold greater than those of wild-type cells. The recA- cells, even when the RecE pathway was derepressed, generated rearrangements only between one of the plasmids and the chromosome, at very low frequencies (10(-9]. In wild-type cells and in RecF cells, interplasmidic recombination generated mainly cointegrates carrying DNA deletions. These cointegrates were stable in recA- or recA- RecE+ cells, but unstable in wild-type or RecF+ cells. In the latter, the cointegrates generated smaller plasmids with different molecular structures at relatively low frequencies.  相似文献   

14.
Double-strand breaks in DNA can be repaired by homologous recombination including break-induced replication. In this reaction, the end of a broken DNA invades an intact chromosome and primes DNA replication resulting in the synthesis of an intact chromosome. Break-induced replication has also been suggested to cause different types of genome rearrangements.  相似文献   

15.
The expression of Mycoplasma pulmonis antigen in Escherichia coli was investigated by cloning genomic DNA derived from M. pulmonis m 53, and the DNA fragment participating in antigen expression was identified. When the DNA library of M. pulmonis was screened by colony immunoassay using anti-M. pulmonis serum, 10 recombinant clones expressing seroreactive antigens were obtained. The recombinant plasmids isolated from these clones included 3.7-6.5 kilobase pair (kbp) DNA inserts, while all clones contained a common 2.3-kbp DNA fragment. Subcloning of initial DNA inserts showed that the common 2.3-kbp fragment is essential for antigen expression. Moreover, antiserum against the recombinant antigen generated from the 2.3-kbp DNA fragment recognized a native M. pulmonis antigen. The reactivity of this antiserum was absorbed specifically with M. pulmonis. These results suggest that the cloned 2.3-kbp DNA fragment codes an antigen specific to M. pulmonis.  相似文献   

16.
Robertsonian translocations are usually ascertained through abnormal children, making proposed phenotypic effects of apparently balanced translocations difficult to study in an unbiased way. From molecular genetic studies, though, some apparently balanced rearrangements are now known to be associated with phenotypic abnormalities resulting from uniparental disomy. Molecular explanations for other cases in which abnormality is seen in a balanced translocation carrier are being sought. In the present paper, an infant is described who has retarded growth, developmental delay, gross muscular hypotonia, slender habitus, frontal bossing, micrognathia, hooked nose, abundant wispy hair, and blue sclerae. Cytogenetically, she appeared to be a carrier of a balanced, paternally derived 14;21 Robertsonian translocation. Analysis of DNA polymorphisms showed that she had no paternal allele at the D14S13 locus (14q32). Study of additional DNA markers within 14q32 revealed that her previously undescribed phenotype results from an interstitial microdeletion within 14q32. Fluorescent in situ hybridization was used to show that this microdeletion had occurred de novo on the Robertsonian translocation chromosome. These observations may reactivate old suspicions of a causal association between Robertsonian translocations and de novo rearrangements in offspring; a systematic search for similar subcytogenetic rearrangements in other families, in which there are phenotypically abnormal children with apparently balanced translocations, may be fruitful. The clinical and molecular genetic data presented also define a new contiguous gene syndrome due to interstitial 14q32 deletion.  相似文献   

17.
When replication forks stop   总被引:18,自引:2,他引:16  
DNA synthesis is an accurate and very processive phenomenon, yet chromosome replication does not proceed at a constant rate and progression of the replication fork can be impeded. Several structural and functional features of the template can modulate the rate of progress of the replication fork. These include DNA secondary structures, DNA damage and occupied protein-binding sites. In addition, prokaryotes contain sites where replication is specifically arrested. DNA regions at which the replication machinery is blocked or transiently slowed could be particularly susceptible to genome rearrangements. Illegitimate recombination, a ubiquitous phenomenon which may have dramatic consequences, occurs by a variety of mechanisms. The observation that some rearrangements might be facilitated by a pause in replication could provide a clue in elucidating these processes. In support of this, some homologous and illegitimate recombination events have already been correlated with replication pauses or arrest sites.  相似文献   

18.
Lovett ST 《DNA Repair》2006,5(12):1421-1427
Difficulties in replication can lead to breakage of the fork. Recombinational reactions restore the integrity of the fork through strand-invasion of the broken chromosome with its sister. If this occurs in the context of repeated DNA sequences, genetic rearrangements can result. We have proposed that this process accounts for stimulation of chromosomal rearrangements by mutations in Escherichia coli's replicative DNA helicase, DnaB. At its permissive temperature for growth, a dnaB107 mutant is a 1000-fold more likely to experience a deletion of a 787bp tandem repeated segment inserted in the E. coli chromosome than is a wild-type strain. We have previously shown that enhanced deletion in a dnaB107 strain is reduced in recA, recB and recG102 (formerly known as radC102) derivatives. Here I show that this enhanced recombination is dependent on other factors: the RuvA Holliday junction helicase, the RecJ single-strand DNA exonuclease, the RadA/Sms RecA-paralog protein of unknown function and, surprisingly, the DinB translesion polymerase. The requirement for these factors in DnaB-stimulated rearrangements is much greater than that observed for recombinational events such as P1 transduction. This may be because strand invasion into the repeats limits the extent of heteroduplex DNA that can be formed in the initial stage of recombination. I propose that RadA, RecG and RuvAB are critically required to stabilize the strand-invasion intermediate and that DinB polymerase extends the invading 3' strand to aid in re-initiation. The role of DinB in bacteria may be analogous to translesion DNA polymerase eta in eukaryotes, recently shown to aid recombination.  相似文献   

19.
DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the analysis of DSB–induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases (SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus participating in the destabilization of the genome by generating complex chromosomal rearrangements.  相似文献   

20.
Haber JE 《DNA Repair》2006,5(9-10):998-1009
Much of what we know about the molecular mechanisms of repairing a broken chromosome has come from the analysis of site-specific double-strand breaks (DSBs). Such DSBs can be generated by conditional expression of meganucleases such as HO or I-SceI or by the excision of a DNA transposable element. The synchronous creation of DSBs in nearly all cells of the population has made it possible to observe the progress of recombination by monitoring both the DNA itself and proteins that become associated with the recombining DNA. Both homologous recombination mechanisms and non-homologous end-joining (NHEJ) mechanisms of recombination have been defined by using these approaches. Here I focus on recombination events that lead to alterations of chromosome structure: transpositions, translocations, deletions, DNA fragment capture and other small insertions. These rearrangements can occur from ectopic gene conversions accompanied by crossing-over, break-induced replication, single-strand annealing or non-homologous end-joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号