首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.  相似文献   

2.
Fatty acid has been reported to be associated with cardiovascular diseases and cancer, but the possible mechanism remains unclear. Here, we reported a novel mechanism for the permissive role of fatty acid on iron intracellular translocation and subsequent oxidative injury. In vitro study from endothelial cells showed that iron alone had little effect, whereas in combination with PA (palmitic acid), iron-mediated toxicity was markedly potentiated, as reflected in mitochondrial dysfunction, cell death, apoptosis, and DNA mutation. We also showed that PA not only facilitated iron translocation into cells through a transferrin-receptor (TfR)-independent mechanism, but also translocated iron into mitochondria; the subsequent intracellular iron overload resulted in reactive oxygen species (ROS) overgeneration and lipid oxidation. Further investigation revealed that PA-facilitated iron translocation is due to Fe/PA-mediated extracellular oxidative stress and the subsequent membrane damage with increased membrane permeability. Fe/PA-mediated toxic effects were reduced in rho0 cells lacking mitochondrial DNA or by antioxidant enzyme SOD, especially mitochondrially localized MnSOD, suggesting a permissive role of PA for iron deposition on the vascular wall and its subsequent toxicity via mitochondrial oxidative stress. This observation was confirmed in vivo in mice, wherein higher vascular iron deposition and accompanying superoxide release were observed in the presence of a high-fat diet with iron administration.  相似文献   

3.
Iron saccharate complex ISC is an iron supplement used to optimize erythropoiesis in cases of iron deficiencies. Because of the lack of major mechanisms of iron excretion, excess iron unbound to protective molecules is believed to be involved in catalyzing the generation of reactive oxygen species and induction of oxidative stress. This study employed ISC for the purpose of inducing iron overload and hence investigating the consequent iron toxicity, lipid peroxidation and antioxidant extent in a murine species. Male Wistar rats were given iron as intraperitoneal injections of ISC in subacute (0.2 mg Fe kg?1 for 2 weeks) and subchronic (0.1 mg Fe kg?1 for 4 weeks) doses. In iron-overloaded rats, enhanced hepatic iron accumulation (P > 0.001) attended by increased serum concentrations of malondialdehyde (MDA) (P > 0.001) and activities of antioxidant enzymes (superoxide dismutase SOD, catalase CAT and glutathione peroxidase GPx) (P > 0.001) was pointed out. The demonstrated antioxidant boost is attributed to a sense of equilibrium prompted by the potential of iron-induced oxidative stress to modify antioxidant defense capacity and to modulate susceptibility to oxidative stress. Rats seemed to constantly suffer from oxidative stress based on the consistent rise in MDA that was not overwhelmed by the elevated antioxidant input. The current findings are of informative value in drawing attention to the health hazards of applying higher doses of the commercially used iron supplement ISC. Data are virtually significant in elucidating the higher magnitude of subchronic than subacute iron overload in initiating oxidative stress and antioxidant defense. Both pathways proceeded in a time-dependent rather than dose-dependent manner.  相似文献   

4.
The oxidation of 2'7'-dichlorofluorescin (DCFH) to 2'7'-dichlorofluorescein (DCF), a fluorescent DCFH oxidation product, is a highly sensitive indicator that is used to measure oxidative stress in cells. In the present study, a DCF assay has been adapted to quantify oxidative stress in human breast epithelial cell cultures after exposure to gamma rays. The results demonstrate that the sensitivity and specificity of the DCF assay is strongly influenced by the timing of DCFH diacetate (DCFH-DA) substrate loading in relation to radiation exposure and by the matrix in which the cells were loaded with DCFH-DA substrate. Under the conditions optimized in this study, the DCF assay is capable of detecting increased DCFH oxidation in cell cultures irradiated with gamma rays at a dose as low as 1.5 cGy. The increase in fluorescence was directly proportional to the radiation dose, which ranged from 0 to 2 Gy, and a minimal level of fluorescence was observed in sham-irradiated cells. These results indicate that the DCF assay optimized in this study is highly sensitive, linear and specific for measuring oxidative stress in irradiated cells.  相似文献   

5.
The present study was undertaken to standardize a dichlorofluorescein (DCF) assay for measurement of radiation-induced oxidation of dichlorofluorescin (DCFH) substrate in MCF-10 cells. This assay was highly sensitive and capable of detecting increased DCFH oxidation in the cells exposed to gamma radiation at doses as low as 1.5 cGy with linear dose-response curves. However, the slope of the dose-response curves varied considerably from one experiment to another and was influenced by the fluorescent substrate concentration and cell density. To make the assay reproducible so that results obtained from different experiments could be compared, a series of conversion factors and equations have been established to normalize the data for these variables. The results demonstrate that the DCF assay, as standardized in the present study, is highly reproducible with acceptable assay precision. The normalized results can be compared from one experiment to another even when the experiments were performed using different fluorescent substrate concentrations and/or cell densities. Since changes in DCFH oxidation may be related to changes that are indicative of oxidative stress in cells, this assay can be useful to quantify radiation-induced oxidative stress and evaluate the efficacy of antioxidant agents in protection against radiation-induced oxidative stress.  相似文献   

6.
In vitro studies have shown that alpha-lipoic acid (LA) is an antioxidant. There is a paucity of studies on LA supplementation in humans. Therefore, the aim of this study was to assess the effect of oral supplementation with LA alone and in combination with alpha-tocopherol (AT) on measures of oxidative stress. A total of 31 healthy adults were supplemented for 2 months either with LA (600 mg/d, n = 16), or with AT (400 IU/d, n = 15) alone, and then with the combination of both for 2 additional months. At baseline, after 2 and 4 months of supplementation, urine for F2-isoprostanes, plasma for protein carbonyl measurement and low-density lipoprotein (LDL) oxidative susceptibility was collected. Plasma oxidizability was assessed after incubation with 100 mM 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) for 4 h at 37 degrees C. LDL was subjected to copper- and AAPH-catalyzed oxidation at 37 degrees C over 5 h and the lag time was computed. LA significantly increased the lag time of LDL lipid peroxide formation for both copper-catalyzed and AAPH-induced LDL oxidalion (p < .05), decreased urinary F2-isoprostanes levels (p < .05), and plasma carbonyl levels after AAPH oxidation (p < .001). AT prolonged LDL lag time of lipid peroxide formation (p < .01 ) and conjugated dienes (p < .01) after copper-catalyzed LDL oxidation, decreased urinary F2-isoprostanes (p < .001), but had no effect on plasma carbonyls. The addition of LA to AT did not produce an additional significant improvement in the measures of oxidative stress. In conclusion, LA supplementation functions as an antioxidant, because it decreases plasma- and LDL-oxidation and urinary isoprostanes.  相似文献   

7.
The chemical reduction and oxidation (redox) properties of alpha-lipoic acid (LA) suggest that it may have potent antioxidant potential. A significant number of studies now show that LA and its reduced form, dihydrolipoic acid (DHLA), directly scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) species and protect cells against a host of insults where oxidative stress is part of the underlying etiology. However, owing to its limited and transient accumulation in tissues following oral intake, the efficacy of nonprotein-bound LA to function as a physiological antioxidant has been questioned. Herein, we review the evidence that the micronutrient functions of LA may be more as an effector of important cellular stress response pathways that ultimately influence endogenous cellular antioxidant levels and reduce proinflammatory mechanisms. This would promote a sustained improvement in cellular resistance to pathologies where oxidative stress is involved, which would not be forthcoming if LA solely acted as a transient ROS scavenger.  相似文献   

8.
9.
10.
Oxidative stress caused as a result of iron overload is implicated in clinical manifestation of beta-thalassemia/haemoglobin E (β-Thal/HbE). In this study, we investigated the cellular adaptation against oxidative stress in β-Thal/HbE patients. Twenty-four paediatric β-Thal/HbE patients and 22 healthy controls were recruited in the study. Blood samples from patients exhibited iron overload, elevation of lipid peroxidation, and marked diminution in the reduced glutathione (GSH) level. However, expression of glutamate-cysteine ligase catalytic (GCLC) subunit, a key enzyme in GSH biosynthesis, was up-regulated when compared with that in controls. GCLC protein levels were correlated with serum iron. There was an enhanced binding activity of the oligonucleotide probe for Nrf2-driven antioxidant response element (ARE) to nuclear protein from blood mononuclear cells of thalassemia subjects. In conclusion, β-Thal/HbE patients exhibit elevated plasma levels of GCLC expression and Nrf2-ARE binding activity, which may account for their adaptive survival response to oxidative stress.  相似文献   

11.
Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. The protective effect of naringin, a grape fruit flavanone, was studied in iron overloaded isolated mouse liver mitochondria, where the isolated mitochondrial fraction was incubated with various concentrations of naringin before ferric ion loading. Iron overloading of mitochondrial fraction resulted in an increase in lipid peroxidation, protein oxidation, and DNA damage, whereas iron overload reduced the glutathione (GSH) concentration, glutathione-S-transferase (GST), glutathione peroxidase (GSHPx), catalase and superoxide dismutase (SOD) activities. Pretreatment of mitochondrial fraction with naringin inhibited iron-induced lipid peroxidation, protein oxidation, and DNA damage. Conversely, naringin supplementation arrested iron-induced depletion in the GSH contents, GSHPx, GST, SOD and catalase activities significantly. Ferric iron reduction assay revealed that naringin could not reduce ferric iron into ferrous iron indicating that it did not exhibit prooxidant activity. Iron free coordination site assay indicated that naringin was unable to occupy all the active sites of iron indicating that naringin did not completely chelate iron. Our study demonstrates that naringin was able to share the burden of endogenous oxidants by inhibiting the iron-induced depletion of all important antioxidant enzymes as well as GSH and may act as a good antioxidant.  相似文献   

12.
Accumulation of divalent metal ions (e.g. iron and copper) has been proposed to contribute to heightened oxidative stress evident in aging and neurodegenerative disorders. To understand the extent of iron accumulation and its effect on antioxidant status, we monitored iron content in the cerebral cortex of F344 rats by inductively coupled plasma atomic emission spectrometry (ICP-AES) and found that the cerebral iron levels in 24-28-month-old rats were increased by 80% (p<0.01) relative to 3-month-old rats. Iron accumulation correlated with a decline in glutathione (GSH) and the GSH/GSSG ratio, indicating that iron accumulation altered antioxidant capacity and thiol redox state in aged animals. Because (R)-alpha-Lipoic acid (LA) is a potent chelator of divalent metal ions in vitro and also regenerates other antioxidants, we monitored whether feeding LA (0.2% [w/w]; 2 weeks) could lower cortical iron and improve antioxidant status. Results show that cerebral iron levels in old LA-fed animals were lower when compared to controls and were similar to levels seen in young rats. Antioxidant status and thiol redox state also improved markedly in old LA-fed rats versus controls. These results thus show that LA supplementation may be a means to modulate the age-related accumulation of cortical iron content, thereby lowering oxidative stress associated with aging.  相似文献   

13.
Hepatitis C virus (HCV) is a major cause of viral hepatitis that can progress to hepatic fibrosis, steatosis, hepatocellular carcinoma, and liver failure. HCV infection is characterized by a systemic oxidative stress that is most likely caused by a combination of chronic inflammation, iron overload, liver damage, and proteins encoded by HCV. The increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development and progression of hepatic and extrahepatic complications of HCV infection. This review discusses the possible mechanisms of HCV-induced oxidative stress and its role in HCV pathogenesis.  相似文献   

14.
Oxidative stress has a central role in aging and in several age-linked diseases such as neurodegenerative diseases, diabetes and cancer. Mitochondria, as the main cellular source and target of reactive oxygen species (ROS) in aging, are recognized as very important players in the above reported diseases. Impaired mitochondrial oxidative phosphorylation has been reported in several aging tissues. Defective mitochondria are not only responsible of bioenergetically less efficient cells but also increase ROS production further contributing to tissues oxidative stress. Acetyl-L-carnitine (ALCAR) is a biomolecule able to limit age-linked mitochondrial decay in brain, liver, heart and skeletal muscles by increasing mitochondrial efficiency. Here the global changes induced by aging and by ALCAR supplementation to old rat on the mitochondrial proteome of rat liver has been analyzed by means of the two-dimensional polyacrylamide gel electrophoresis. Mass spectrometry has been used to identify the differentially expressed proteins. A significant age-related change occurred in 31 proteins involved in several metabolisms. ALCAR supplementation altered the levels of 26 proteins. In particular, ALCAR reversed the age-related alterations of 10 mitochondrial proteins relative to mitochondrial cristae morphology, to the oxidative phosphorylation and antioxidant systems, to urea cycle, to purine biosynthesis.  相似文献   

15.
The oxidation of 2′,7′-dichlorodihydrofluorescein (2′,7′-dichlorofluorescin, DCFH) to a fluorescent product, 2′,7′-dichlorofluorescein (DCF), is commonly used to quantitatively measure oxidative stress in cells using a fluorescence microplate reader. However, many cell lines tend to grow non-uniformly in the wells. This non-uniform distribution results in a high degree of variability in the fluorescence signal and decreases the precision of the method. Also, samples treated in large culture plates, dishes or flasks cannot be assayed directly in fluorescence microplate readers. This study reports an improved DCF assay method that lyses cells with DMSO/PBS (90% dimethyl sulphoxide/10% phosphate buffered saline). Oxidative stress was induced with either hydrogen peroxide or an hypoxia-reoxygenation treatment. Cell lysis with DMSO/PBS resulted in highly stable fluorescence signals in comparison to Triton X-100/PBS lysed cells. The precision of DCF fluorescence measurements of DMSO/PBS lysed cells was much better than for attached cells measured directly in 96-well plates. While DCF fluorescence in PBS was strongly quenched by albumin, no quenching occurred in DMSO/PBS. In conclusion this study describes a more convenient and accurate method for measuring cellular oxidative stress that also makes it possible to assay cells treated in large culture plates.  相似文献   

16.
Oxidative stress has been implicated as a causal factor in the aging process of the heart and other tissues. To determine the extent of age-related myocardial oxidative stress, oxidant production, antioxidant status, and oxidative DNA damage were measured in hearts of young (2 months) and old (28 months) male Fischer 344 rats. Cardiac myocytes isolated from old rats showed a nearly threefold increase in the rate of oxidant production compared to young rats, as measured by the rates of 2,7-dichlorofluorescin diacetate oxidation. Determination of myocardial antioxidant status revealed a significant twofold decline in the levels of ascorbic acid (P = 0.03), but not alpha-tocopherol. A significant age-related increase (P = 0.05) in steady-state levels of oxidative DNA damage was observed, as monitored by 8-oxo-2'-deoxyguanosine levels. To investigate whether dietary supplementation with (R)-alpha-lipoic acid (LA) was effective at reducing oxidative stress, young and old rats were fed an AIN-93M diet with or without 0.2% (w/w) LA for 2 wk before death. Cardiac myocytes from old, LA-supplemented rats exhibited a markedly lower rate of oxidant production that was no longer significantly different from that in cells from unsupplemented, young rats. Lipoic acid supplementation also restored myocardial ascorbic acid levels and reduced oxidative DNA damage. Our data indicate that the aging rat heart is under increased mitochondrial-induced oxidative stress, which is significantly attenuated by lipoic acid supplementation.  相似文献   

17.
Intracellular 2,7-dichlorofluorescin (H(2)DCF) oxidation is often used to measure the production of reactive oxygen species (ROS) within cells. The rate of H(2)DCF oxidation depends on the concentration of glutathione, which is an alternative target for ROS. Our results suggest that increased rate of H(2)DCF oxidation be interpreted as an indication of general oxidative stress due to a variety of reasons, including depletion of antioxidants, rather than as a specific proof of augmented ROS formation.  相似文献   

18.
alpha-Lipoic acid (LA) has been widely studied as an agent for preventing and treating various diseases associated with oxidative disruption of mitochondrial functions. To investigate a related mitochondrial antioxidant, we compared the effects of lipoamide (LM), the neutral amide of LA, with LA for measures of oxidative damage and mitochondrial dysfunction in a human retinal pigment epithelial (RPE) cell line. Acrolein, a major component of cigarette smoke and a product of lipid peroxidation, was used to induce oxidative mitochondrial damage in RPE cells. Overall, using comparable concentrations, LM was more effective than LA at preventing acrolein-induced mitochondrial dysfunction and oxidative stress. Relative to LA, LM improved ATP levels, membrane potentials, and activities of mitochondrial complexes I, II, and V and dehydrogenases that had been decreased by acrolein exposure. LM reduced acrolein-induced oxidant generation, calcium levels, protein oxidation, and DNA damage to a greater degree than LA. And, total antioxidant capacity, glutathione content, glutathione S-transferase, and superoxide dismutase activities and expression of nuclear factor-E2-related factor 2 were increased by LM relative to LA. These results suggest that LM is a more potent mitochondrial-protective agent and antioxidant than LA in protecting RPE from oxidative damage.  相似文献   

19.
Iron overload is common in elderly people which is implicated in the disease progression of osteoarthritis (OA), however, how iron homeostasis is regulated during the onset and progression of OA and how it contributes to the pathological transition of articular chondrocytes remain unknown. In the present study, we developed an in vitro approach to investigate the roles of iron homeostasis and iron overload mediated oxidative stress in chondrocytes under an inflammatory environment. We found that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis via upregulating iron influx transporter TfR1 and downregulating iron efflux transporter FPN, thus leading to chondrocytes iron overload. Iron overload would promote the expression of chondrocytes catabolic markers, MMP3 and MMP13 expression. In addition, we found that oxidative stress and mitochondrial dysfunction played important roles in iron overload-induced cartilage degeneration, reducing iron concentration using iron chelator or antioxidant drugs could inhibit iron overload-induced OA-related catabolic markers and mitochondrial dysfunction. Our results suggest that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis and promote iron influx, iron overload-induced oxidative stress and mitochondrial dysfunction play important roles in iron overload-induced cartilage degeneration.  相似文献   

20.
Abstract

Accumulation of divalent metal ions (e.g. iron and copper) has been proposed to contribute to heightened oxidative stress evident in aging and neurodegenerative disorders. To understand the extent of iron accumulation and its effect on antioxidant status, we monitored iron content in the cerebral cortex of F344 rats by inductively coupled plasma atomic emission spectrometry (ICP-AES) and found that the cerebral iron levels in 24–28-month-old rats were increased by 80% (p<0.01) relative to 3-month-old rats. Iron accumulation correlated with a decline in glutathione (GSH) and the GSH/GSSG ratio, indicating that iron accumulation altered antioxidant capacity and thiol redox state in aged animals. Because (R)-α-Lipoic acid (LA) is a potent chelator of divalent metal ions in vitro and also regenerates other antioxidants, we monitored whether feeding LA (0.2% [w/w]; 2 weeks) could lower cortical iron and improve antioxidant status. Results show that cerebral iron levels in old LA-fed animals were lower when compared to controls and were similar to levels seen in young rats. Antioxidant status and thiol redox state also improved markedly in old LA-fed rats versus controls. These results thus show that LA supplementation may be a means to modulate the age-related accumulation of cortical iron content, thereby lowering oxidative stress associated with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号