首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study addresses the question of whether observable changes in fluxes in the primary carbon metabolism of Saccharomyces cerevisiae occur between the different phases of the cell division cycle. To detect such changes by metabolic flux analysis, a 13C-labeling experiment was performed with a fed-batch culture inoculated with a partially synchronized cell population obtained through centrifugal elutriation. Such a culture exhibits dynamic changes in the fractions of cells in different cell cycle phases over time. The mass isotopomer distributions of free intracellular metabolites in central carbon metabolism were measured by liquid chromatography-mass spectrometry. For four time points during the culture, these distributions were used to obtain the best estimates for the metabolic fluxes. The obtained flux fits suggested that the optimally fitted split ratio for the pentose phosphate pathway changed by almost a factor of 2 up and down around a value of 0.27 during the experiment. Statistical analysis revealed that some of the fitted flux distributions for different time points were significantly different from each other, indicating that cell cycle-dependent variations in cytosolic metabolic fluxes indeed occurred.  相似文献   

3.
The diversity and content of available nitrogen sources in the growth medium both are very important in the accumulation of ergosterol in the yeast cell membrane. Growth on the good nitrogen sources such as ammonia can harvest more yeast cells than on poor ones, but ergosterol content in those yeast cells is relatively lower. Ergosterol content, one of the most variable parameters in ergosterol production by yeast cultivation, is greatly influenced by nitrogen limitation. The aim of our work was to study how the nitrogen sources affected the membrane ergosterol content and increase the total ergosterol yield. On the premise of keeping high ergosterol content in yeast cell, the ergosterol yield was enhanced by increasing the yeast biomass. Direct feed back control of glucose using an on-line ethanol concentration monitor was introduced to achieve high cell density. Ammonia, which acted as nitrogen source, was added to adjust pH during fermentation process, but its addition needed careful control. Cultivation in 5 L bioreactor was carried out under following conditions: culture temperature 30+/-1 degrees C, pH 5.5+/-0.1, agitation speed 600 rpm, controlling ethanol concentration below 1% and controlling ammonium ion concentration below 0.1 mol/L. Under these conditions the yeast dry weight reached 95.0+/-2.6 g/L and the ergosterol yield reached 1981+/-34 mg/L.  相似文献   

4.
5.
A dynamic flux balance model based on a genome-scale metabolic network reconstruction is developed for in silico analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed-batch performance in glucose and glucose/xylose media. Dynamic analysis is shown to provide a single quantitative measure of fed-batch ethanol productivity that explicitly handles the possible tradeoff between the biomass and ethanol yields. Productivity optimization conducted to rank achievable fed-batch performance demonstrates that the genetic manipulation strategy and the fed-batch operating policy should be considered simultaneously. A library of candidate gene insertions is assembled and directly screened for their achievable ethanol productivity in fed-batch culture. A number of novel gene insertions with ethanol productivities identical to the best metabolic engineering strategies reported in previous studies are identified, thereby providing additional targets for experimental evaluation. The top performing gene insertions were substrate dependent, with the highest ranked insertions for glucose media yielding suboptimal performance in glucose/xylose media. The analysis results suggest that enhancements in biomass yield are most beneficial for the enhancement of fed-batch ethanol productivity by recombinant xylose utilizing yeast strains. We conclude that steady-state flux balance analysis is not sufficient to predict fed-batch performance and that the media, genetic manipulations, and fed-batch operating policy should be considered simultaneously to achieve optimal metabolite productivity.  相似文献   

6.
The uptake and accumulation of the B-group vitamins thiamine, riboflavin, nicotinamide, pantothenic acid and pyridoxine in Saccharomyces cerevisiae was studied by gradually increasing the specific dosage of vitamins in an ethanol-stat fed-batch culture. Thiamine, nicotinamide, pantothenic acid, and pyridoxine were almost completely taken up at low vitamin dosages. Thiamine was determined to be the major accumulating form of vitamin B1 while most of the assimilated nicotinamide and pantothenic acid accumulated in cofactor forms. Despite the obvious uptake of pyridoxine, accumulation of B6 vitamers was not observed. In contrast with the other vitamins studied, riboflavin began accumulating in the culture medium immediately after vitamin addition was initiated. By the end of the experiment, the apparent uptake of all vitamins exceeded their accumulation in the cells. Variations in the growth rate of yeast at different vitamin dosages demonstrate the importance of balancing the vitamins in the media during cultivation.  相似文献   

7.
An unstructured model is developed to describe the growth and product formation behavior of a recombinant yeast Saccharomyces cerevisiae using beta-galactosidase as a model protein. The model shows good agreement with the experimental data over a range of conditions. It also accurately predicts the effect of growth rate on yield coefficient and gene expression. The simplicity and accuracy of the model make it suitable for designing and implementing control and optimization strategies for the production of recombinant proteins at large scale.  相似文献   

8.
An efficient method of growing the protozoon Tetrahymena to high cell densities in a 2-1 bioreactor is described. The first phase of the fermentation is a batch phase with minimum generation times (1.4 h). During the next phase medium is exchanged continuously using a perfusion module based on microporous hollow fibres while cell are retained. Compared to standard batch fermentations of this organism 30- to 40-fold higher cell concentrations and dry weights were achieved routinely. A maximum cell concentration of 2.2 × 107 cells/ml and a dry weight of 54 g/l have been obtained. As estimated from isocitrate dehydrogenase activity in the culture medium, no cell damage occurred even at high agitation rates. In addition, the cells remained viable for several weeks. Temporal limitation of the process was due to a decrease in the perfusion rate caused by blocking of the membranes. By X-ray microprobe analysis calcium phosphate depositions were detected in the pores of the clogged hollow-fibre membranes. However, even a T. pyriformis strain possessing mucocysts, dense core secretory organelles that may lead to early membrane clogging, was cultivated successfully for 3 weeks. Additionally, the consumption of nutrient protein and carbohydrates during fermentation was investigated and the effect of different perfusion rates and of glucose was studied in order to increase the efficieny of the system.Correspondence to: A. Tiedtke  相似文献   

9.
Yeast is a widely used microorganism at the industrial level because of its biomass and metabolite production capabilities. However, due to its sensitivity to the glucose effect, problems occur during scale-up to the industrial scale. Hydrodynamic conditions are not ideal in large-scale bioreactors, and glucose concentration gradients can arise when these bioreactors are operating in fed-batch mode. We have studied the effects of such gradients in a scale-down reactor, which consists of a mixed part linked to a non-mixed part by a recirculation pump, in order to mimic the hydrodynamic conditions encountered at the large scale. During the fermentation tests in the scale-down reactor, there was a drop in both biomass yield (ratio between the biomass produced and the glucose added) and trehalose production and an increase in both fermentation time (time between inoculation and beginning of stationary phase) and ethanol production. We have developed a stochastic model which explains these effects as the result of an induction process determined mainly by the hydrodynamic conditions. The concentration profiles experienced by the microorganisms during the scale-down tests were expressed and linked to the biomass yields of the scale-down tests.  相似文献   

10.
The feasibility of applying an adaptive control technique to a fermentation process is investigated. The nonlinear, time-variant parameters of a fermentation process were estimated on-line as a series of linearized describing matrices. The matrices were used to update a suboptimal feedback law which controlled the process in real time over the linear region. Experiments were performed on a small-scale fully instrumented fermenter with the online, real-time adaptive control package. Results are presented for both single- and multivariable control, and indicate successful control of yeast cell growth.  相似文献   

11.
Calorimetry has been used to control the glucose feeding in fed-batch cultures of S. cerevisiae in order to avoid ethanol formation and maintain a fully respiratory metabolism. Comparisons between batch and fed-batch cultivations showed that the former had a much lower growth yield. The growth yields for fed-batch cultivations were more than 30% higher than for batch cultures. However, energy balance calculations showed that a large part of the increase could be explained by the evaporation of ethanol during batch cultivations. When the growth yields obtained from the batch cultures were corrected for the evaporation of ethanol, the increase in growth yield for fed-batch cultures was about 10%.  相似文献   

12.
13.
Glucose oxidase (GOD) from Aspergillus niger was expressed in Saccharomyces cerevisiae under the regime of GAL-10 promoter and GAL-7 terminator of S. cerevisiae and -amylase signal sequence of Aspergillus oryzae. The enhancement of the expression level was achieved in pH-stat feed-back controlled fed-batch culture. The highest titre of extracellular GOD was 199 U/ml which marked two fold improvement over the batch (95 U/ml) and 28% above that of non-feed back controlled fed-batch (154 U/ml) operation. © Rapid Science Ltd. 1998  相似文献   

14.
The plasmid stability of a recombinant Saccharomyces cerevisiae strain, which expresses cloned -amylase, was increased when glucose or yeast extract was fed with multi-pulse mode in fed-batch culture. Using a novel strategy combining constant rate fed-batch culture and multi-pulse feeding of yeast extract, the plasmid stability was maintained over 90%, meanwhile, 36 g cells l–1 and 208 units of cloned -amylase activity ml–1 were obtained.  相似文献   

15.
A strain of genetically modified Saccharomyces cerevisiae (S. cerevisiae) W303 181 was used to improve glucose-6-phosphate dehydrogenase (G6PDH) production in aerobic culture. Fed-batch cultures were carried out in a 5 L fermentor at variable values of the parameter K, namely, 0.2, 0.3, 0.5, 0.7, and 0.8 h(-)(1). The highest G6PDH production (1164 U/L) and specific activity (517 U/g(cell)) were obtained using the following conditions: glucose, 5.0 g/L; adenine, 8 microg/mL; histidine, 8 microg/mL; tryptophan, 8 microg/mL; temperature, 30 degrees C; inoculum, 1.28 g/L; pH, 5.7; agitation, 400 rpm; aeration, 2.2 vvm; and K, 0.2 h(-)(1). The exponential feeding pattern increased cell density (2.14 g/L), enzyme productivity (149.27), and biomass yield (0.18 g(glu)/g(cell)( )(mass)). The level of G6PDH in the genetically modified S. cerevisiae was approximately 4.1-fold higher than that found in a commercial strain.  相似文献   

16.
In production-scale, fed-batch fermentations, feed is often added to a single point at the top of the fermentor, which, combined with poor mixing, results in formation of a "feed zone" rich in nutrients. Frequent exposure of the culture to high concentrations of nutrients in the feed zone for sufficient duration can produce unexpected effects on its performance. The effect of the feed zone was evaluated by conducting aerobic fed-batch fermentations of Saccharomyces cerevisiae with both complex and defined media. The broth was recirculated between a recycle loop and a bench-scale fermentor, and feed was intermittently added into the recycle loop to simulate the circulation of cells through the feed zone. Experiments were carried out for a range of residence times in the recycle loop from 0.5 to 12 min. Biomass yields from the complex-media fermentations were not affected by exposure to high nutrient levels in the recycle loop for residence times up to 12 min. Ethanol consumption was reduced by as much as 50% for residence time in the loop up to 3 min. Very long exposure of yeast cells to excess nutrient levels (12 min) gave acetic acid formation. In a defined medium, the simulated feed zone effect increased biomass yield by up to 10%, but had no effect on ethanol levels. This study indicates that the feed zone effect on biomass yield in yeast fermentation, using complex substrates, will be negligible under fully aerobic conditions.  相似文献   

17.
We have performed controlled fed-batch fermentation experiments to compare the production level of hepatitis B surface antigen (HBsAg) by recombinant yeast Saccharomyces cerevisiae strains (YNN27/pYBH-1, YNN27/ p2mu-S11, YNN27/pDCB-S2) containing plasmid vector with alcohol dehydrogenase (ADH1), acid phosphatase (PHO5), and glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, respectively. Yeast cell concentrations of 15-35 g dry cell weight/L were obtained. By limiting phosphorous concentration, HBsAg expression level for the YNN27/p2mu-S11 strain with inducible PHO5 promoter reached 0.2-0.3 mg/L. By controlling nutrient addition rate and dissolved oxygen concentration, HBsAg concentrations of 3-10 mg/L were achieved in 60-70 h fermentation using the YNN27/pDCB-S2 strain with the constitutive GPD promoter.  相似文献   

18.
19.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号