首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The structural maintenance of chromosome protein SMC3 is a component of the cohesin complex that mediates sister chromatid cohesion and segregation in prokaryotes and eukaryotes. It is also present extracellularly in the form of a chondroitin sulfate proteoglycan known as bamacan. We have found previously that SMC3 expression is elevated in a large fraction of human colon carcinomas. The additional finding that the protein is significantly increased in the intestinal polyps of ApcMin/+ mice has led us to hypothesize that SMC3 expression is linked to activation of the APC/beta-catenin/TCF4 pathway. The immunohistochemical analysis of colon adenocarcinomas from clinical specimens revealed that beta-catenin and SMC3 antigens co-localize with maximal stain intensity within the transformed areas. Cloning and sequencing of 1578 bp of the human SMC3 promoter unveiled the presence of seven putative consensus sequences for beta-catenin/TCF4 binding, two of which are conserved in the mouse Smc3 promoter. Transient transfection experiments in HCT116 and SW480 human colon carcinoma cells using deletion and mutated promoter constructs in luciferase reporter vectors confirmed that the putative sites, the first located at -48 bp and the second located at -701 bp, are susceptible to beta-catenin/TCF4 transactivation. Co-transfection with a beta-catenin expression vector enhanced the promoter activity whereas E-cadherin had the opposite effect. Binding of beta-catenin/TCF4 complexes from SW480 nuclear extracts to these sequences was confirmed by electrophoretic shift and supershift mobility assays. Altogether these results are consistent with the idea that the beta-catenin/TCF4 transactivation pathway contributes to SMC3 overexpression in intestinal tumorigenesis.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The human sex-determining gene SRY is a direct target of WT1   总被引:5,自引:0,他引:5  
The product of the Wilms' tumor gene, WT1, is essential for male sex determination and differentiation in mammals. In addition to causing Wilms' tumor, mutations in WT1 often cause two distinct but overlapping urogenital defects in men, Denys-Drash syndrome and Frasier syndrome. In this study we investigated the regulation of the sex determination gene SRY by WT1. Our results showed that WT1 up-regulates the SRY gene through the proximal early growth response gene-1-like DNA-binding sequences in the core promoter. Mutant WT1 proteins in Denys-Drash syndrome patients were unable to activate this promoter. These mutants did not act in a dominant negative manner, as expected over the wild-type WT1 in this promoter. We also found that WT1 could transactivate the endogenous SRY gene. These observations, together with the overlapping expression patterns of WT1 and SRY in human gonads, led us to propose that WT1 regulates SRY in the initial sex determination process in humans and activates a cascade of genes ultimately leading to the complete organogenesis of the testis.  相似文献   

13.
14.
15.
16.
17.
Epstein-Barr virus (EBV) infects and transforms primary B lymphocytes in vitro. Viral infection initiates the cell cycle entry of the resting B lymphocytes. The maintenance of proliferation in the infected cells is strictly dependent on functional EBNA2. We have recently developed a conditional immortalization system for EBV by rendering the function of EBNA2, and thus proliferation of the immortalized cells, dependent on estrogen. This cellular system was used to identify early events preceding induction of proliferation. We show that LMP1 and c-myc are directly activated by EBNA2, indicating that all cellular factors essential for induction of these genes by EBNA2 are present in the resting cells. In contrast, induction of the cell cycle regulators cyclin D2 and cdk4 are secondary events, which require de novo protein synthesis.  相似文献   

18.
19.
beta-catenin is a target for the ubiquitin-proteasome pathway.   总被引:38,自引:3,他引:35       下载免费PDF全文
H Aberle  A Bauer  J Stappert  A Kispert    R Kemler 《The EMBO journal》1997,16(13):3797-3804
beta-catenin is a central component of the cadherin cell adhesion complex and plays an essential role in the Wingless/Wnt signaling pathway. In the current model of this pathway, the amount of beta-catenin (or its invertebrate homolog Armadillo) is tightly regulated and its steady-state level outside the cadherin-catenin complex is low in the absence of Wingless/Wnt signal. Here we show that the ubiquitin-dependent proteolysis system is involved in the regulation of beta-catenin turnover. beta-catenin, but not E-cadherin, p120(cas) or alpha-catenin, becomes stabilized when proteasome-mediated proteolysis is inhibited and this leads to the accumulation of multi-ubiquitinated forms of beta-catenin. Mutagenesis experiments demonstrate that substitution of the serine residues in the glycogen synthase kinase 3beta (GSK3beta) phosphorylation consensus motif of beta-catenin inhibits ubiquitination and results in stabilization of the protein. This motif in beta-catenin resembles a motif in IkappaB (inhibitor of NFkappaB) which is required for the phosphorylation-dependent degradation of IkappaB via the ubiquitin-proteasome pathway. We show that ubiquitination of beta-catenin is greatly reduced in Wnt-expressing cells, providing the first evidence that the ubiquitin-proteasome degradation pathway may act downstream of GSK3beta in the regulation of beta-catenin.  相似文献   

20.
Previous studies have identified the NK homeobox gene bagpipe and the FoxF fork head domain gene biniou as essential regulators of visceral mesoderm development in Drosophila. Here we present additional genetic and molecular information on the functions of these two genes during visceral mesoderm morphogenesis and differentiation. We show that both genes are required for the activation of beta 3Tub60D in the visceral mesoderm, which encodes beta 3 tubulin. We demonstrate that a 254 bp derivative of a previously defined visceral mesoderm-specific enhancer element, vm1, from beta 3Tub60D contains one specific in vitro binding site for Bagpipe and two such sites for Biniou. While the wild-type version of the 254 bp enhancer is able to drive significant levels of reporter gene expression within the entire trunk visceral mesoderm, mutation of either the Bagpipe or the Biniou binding sites within this element results in a severe decrease of enhancer activity. Moreover, mutation of all three binding sites for Bagpipe and Biniou, respectively, results in the complete loss of enhancer activity. Together, these observations suggest that Bagpipe and Biniou serve as direct, partially redundant, and tissue-specific activators of the terminal differentiation gene beta 3Tub60D in the visceral mesoderm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号