首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Löhr U  Yussa M  Pick L 《Current biology : CB》2001,11(18):1403-1412
BACKGROUND: Hox genes specify cell fate and regional identity during animal development. These genes are present in evolutionarily conserved clusters thought to have arisen by gene duplication and divergence. Most members of the Drosophila Hox complex (HOM-C) have homeotic functions. However, a small number of HOM-C genes, such as the segmentation gene fushi tarazu (ftz), have nonhomeotic functions. If these genes arose from a homeotic ancestor, their functional properties must have changed significantly during the evolution of modern Drosophila. RESULTS: Here, we have asked how Drosophila ftz evolved from an ancestral homeotic gene to obtain a novel function in segmentation. We expressed Ftz proteins at various developmental stages to assess their potential to regulate segmentation and to generate homeotic transformations. Drosophila Ftz protein has lost the inherent ability to mediate homeosis and functions exclusively in segmentation pathways. In contrast, Ftz from the primitive insect Tribolium (Tc-Ftz) has retained homeotic potential, generating homeotic transformations in larvae and adults and retaining the ability to repress homothorax, a hallmark of homeotic genes. Similarly, Schistocerca Ftz (Sg-Ftz) caused homeotic transformations of antenna toward leg. Primitive Ftz orthologs have moderate segmentation potential, reflected by weak interactions with the segmentation-specific cofactor Ftz-F1. Thus, Ftz orthologs represent evolutionary intermediates that have weak segmentation potential but retain the ability to act as homeotic genes. CONCLUSIONS: ftz evolved from an ancestral homeotic gene as a result of changes in both regulation of expression and specific alterations in the protein-coding region. Studies of ftz orthologs from primitive insects have provided a "snap-shot" view of the progressive evolution of a Hox protein as it took on segmentation function and lost homeotic potential. We propose that the specialization of Drosophila Ftz for segmentation resulted from loss and gain of specific domains that mediate interactions with distinct cofactors.  相似文献   

2.
3.
In a recent paper, Merabet and Hudry discuss models explaining the functional evolution of fushi tarazu (ftz) from an ancestral homeotic to a pair-rule segmentation gene in Drosophila. As most of the experimental work underlying these models comes from our research, we wish to reply to Merabet and Hudry providing an explanation of the experimental approaches and logical framework underlying them. We review experimental data that support our hypotheses and discuss misconceptions in the literature. We emphasize that the change in ftz function required changes in both expression pattern and protein function and review the evidence that these functional changes involved a switch in cofactor-interaction motifs during arthropod radiations. While agreeing with Merabet and Hudry that protein context likely contributes to Ftz function, we argue that until supporting evidence for alternative mechanisms is obtained, the role of cofactor-interaction motifs in driving a functional switch remains compelling.  相似文献   

4.
The DNA-binding homeobox motif was first identified in several Drosophila homeotic genes but also in fushi tarazu, a gene found in the Hox cluster yet involved in segmentation, not anteroposterior patterning [1]. Homeotic transformations are not seen in insect ftz mutants, and insect ftz genes do not have Hox-like expression except within the nervous system [2] [3]. Insect ftz homeobox sequences link them to the Antp-class genes and Tribolium and Schistocerca orthologs have Antp-class YPWM motifs amino-terminal to the homeobox [2] [3]. Orthologs of ftz cloned from a centipede and an onychophoran [4] show that it predates the emergence of the arthropods, but the inability to pinpoint non-arthropodan orthologs suggested that ftz is the product of a Hox gene duplication in the arthropod ancestor [4] [5]. I have cloned ftz orthologs from a mite and a tardigrade, arthropod outgroups of the insects [6]. Mite ftz is expressed in a Hox-like pattern, confirming its ancestral role in anteroposterior patterning. Phylogenetic analyses indicate that arthropod ftz genes are orthologous to the Lox5 genes of lophotrochozoans (a group that includes molluscs) [7] and, possibly, with the Mab-5 genes of nematodes and Hox6 genes of deuterostomes and would therefore have been present in the triploblast ancestor.  相似文献   

5.
6.
7.
Many embryonic patterning genes are remarkably conserved between vertebrates and invertebrates, and the Hox genes are paradigmatic examples of this conservation. Yet even Hox genes can change dramatically in evolution. Two genes in particular--Hox3 and fushi tarazu--lost their ancestral roles as homeotic genes and play very different developmental roles in the fruit fly Drosophila melanogaster. The Drosophila Hox3 homologs zerknullt and bicoid act in extraembryonic tissues and in establishment of the anteroposterior axis, respectively, whereas fushi tarazu acts in segmentation and neurogenesis. It would be valuable to know what mechanisms allowed Hox3 and ftz to abandon their ancestral roles as homeotic genes and take on new roles. To explore the evolutionary transition of these genes, we analyzed their expression in a primitive insect, the firebrat Thermobia domestica. The expression patterns seem to represent a stage of evolution intermediate between the ancestral state seen in basal arthropods and the derived expression patterns in Drosophila. These expression data help us to narrow the period in which the gene transitions took place. Hox3 appears to have evolved directly into zen within the insects, whereas ftz seems to have adopted the expression patterns of a segmentation and neurogenesis gene earlier in the mandibulate arthropods.  相似文献   

8.
D Maier  A Preiss    J R Powell 《The EMBO journal》1990,9(12):3957-3966
An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila.  相似文献   

9.
Regulation and function of the Drosophila segmentation gene fushi tarazu   总被引:68,自引:0,他引:68  
Y Hiromi  W J Gehring 《Cell》1987,50(6):963-974
The Drosophila segmentation gene fushi tarazu (ftz) is expressed in a pattern of seven stripes at the blastoderm stage. Two cis-acting control elements are required for this expression: the zebra element, which confers the striped pattern by mediating the effects of a subset of segmentation genes; and the upstream element, an enhancer element requiring ftz+ activity for its action. Fusion of the upstream element to a basal promoter results in activation of the heterologous promoter in a ftz-dependent striped pattern, supporting the idea that ftz regulates itself by acting through its enhancer. The upstream element can also confer expression patterns similar to that of the homeotic gene Antennapedia, suggesting that a similar element may play a role in the activation of Antennapedia.  相似文献   

10.
11.
Kankel MW  Duncan DM  Duncan I 《Genetics》2004,168(1):161-180
The pair-rule gene fushi tarazu (ftz) of Drosophila is expressed at the blastoderm stage in seven stripes that serve to define the even-numbered parasegments. ftz encodes a DNA-binding homeodomain protein and is known to regulate genes of the segment polarity, homeotic, and pair-rule classes. Despite intensive analysis in a number of laboratories, how ftz is regulated and how it controls its targets are still poorly understood. To help understand these processes, we conducted a screen to identify dominant mutations that enhance the lethality of a ftz temperature-sensitive mutant. Twenty-six enhancers were isolated, which define 21 genes. All but one of the mutations recovered show a maternal effect in their interaction with ftz. Three of the enhancers proved to be alleles of the known ftz protein cofactor gene ftz-f1, demonstrating the efficacy of the screen. Four enhancers are alleles of Atrophin (Atro), the Drosophila homolog of the human gene responsible for the neurodegenerative disease dentatorubral-pallidoluysian atrophy. Embryos from Atro mutant germ-line mothers lack the even-numbered (ftz-dependent) engrailed stripes and show strong ftz-like segmentation defects. These defects likely result from a reduction in Even-skipped (Eve) repression ability, as Atro has been shown to function as a corepressor for Eve. In this study, we present evidence that Atro is also a member of the trithorax group (trxG) of Hox gene regulators. Atro appears to be particularly closely related in function to the trxG gene osa, which encodes a component of the brahma chromatin remodeling complex. One additional gene was identified that causes pair-rule segmentation defects in embryos from homozygous mutant germ-line mothers. The single allele of this gene, called bek, also causes nuclear abnormalities similar to those caused by alleles of the Trithorax-like gene, which encodes the GAGA factor.  相似文献   

12.
13.
The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.  相似文献   

14.
15.
16.
17.
In Metazoa, Hox genes control the identity of the body parts along the anteroposterior axis. In addition to this homeotic function, these genes are characterized by two conserved features: They are clustered in the genome, and they contain a particular sequence, the homeobox, encoding a DNA-binding domain. Analysis of Hox homeobox sequences suggests that the Hox cluster emerged early in Metazoa and then underwent gene duplication events. In arthropods, the Hox cluster contains eight genes with a homeotic function and two other Hox-like genes, zerknullt (zen)/Hox3 and fushi tarazu (ftz). In insects, these two genes have lost their homeotic function but have acquired new functions in embryogenesis. In contrast, in chelicerates, these genes are expressed in a Hox-like pattern, which suggests that they have conserved their ancestral homeotic function. We describe here the characterization of Diva, the homologue of ftz in the cirripede crustacean Sacculina carcini. Diva is located in the Hox cluster, in the same position as the ftz genes of insects, and is not expressed in a Hox-like pattern. Instead, it is expressed exclusively in the central nervous system. Such a neurogenic expression of ftz has been also described in insects. This study, which provides the first information about the Hoxcluster in Crustacea, reveals that it may not be much smaller than the insect cluster. Study of the Diva expression pattern suggests that the arthropod ftz gene has lost its ancestral homeotic function after the divergence of the Crustacea/Hexapoda clade from other arthropod clades. In contrast, the function of ftz during neurogenesis is well conserved in insects and crustaceans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号