首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We investigated how postural responses to galvanic vestibular stimulation were affected by standing on a translating support surface and by somatosensory loss due to diabetic neuropathy. We tested the hypothesis that an unstable surface and somatosensory loss can result in an increase of vestibulospinal sensitivity. Bipolar galvanic vestibular stimulation was applied to subjects who were standing on a force platform, either on a hard, stationary surface or during a backward platform translation (9 cm, 4.2 cm/s). The intensity of the galvanic stimulus was varied from 0.25 to 1 mA. The amplitude of the peak body CoP displacement in response to the galvanic stimulus was plotted as a function of stimulus intensity for each individual. A larger increase in CoP displacement to a given increase in galvanic current was interpreted as an increase of vestibulospinal sensitivity. Subjects with somatosensory loss in the feet due to diabetes showed higher vestibulospinal sensitivity than healthy subjects when tested on a stationary support surface. Control subjects and patients with somatosensory loss standing on translating surface also showed increased galvanic response gains compared to stance on a stationary surface. The severity of the somatosensory loss in the feet correlated with the increased postural sensitivity to galvanic vestibular stimulation. These results showed that postural responses to galvanic vestibular stimulus were modified by somatosensory information from the surface. Somatosensory loss due to diabetic neuropathy and alteration of somatosensory input during stance on translating support surface resulted in increased vestibulospinal sensitivity.  相似文献   

2.
 With galvanic vestibular stimulation (GVS), electrical current is delivered transcutaneously to the vestibular afferents through electrodes placed over the mastoid bones. This serves to modulate the continuous firing levels of the vestibular afferents, and causes a standing subject to lean in different directions depending on the polarity of the current. Our objective in this study was to test the hypothesis that the sway response elicited by GVS can be used to reduce the postural sway resulting from a mechanical perturbation. Nine subjects were tested for their postural responses to both galvanic stimuli and support-surface translations. Transfer-function models were fit to these responses and used to calculate a galvanic stimulus that would act to counteract sway induced by a support-surface translation. The subjects' responses to support-surface translations, without and with the stabilizing galvanic stimulus, were then measured. With the stabilizing galvanic stimulus, all subjects showed significant reductions in both sway amplitude and sway latency. Thus, with GVS, subjects maintained a more erect stance and followed the support-surface displacement more closely. These findings suggest that GVS could possibly form the basis for a vestibular prosthesis by providing a means through which an individual's posture can be systematically controlled. Received: 11 May 2000 / Accepted in revised form: 20 November 2000  相似文献   

3.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   

4.
To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.  相似文献   

5.
Popov  K. E.  Smetanin  B. N.  Kozhina  G. V. 《Neurophysiology》2001,33(4):258-265
In healthy volunteers, we recorded stabilograms and studied postural responses evoked by galvanic stimulation of the labyrinth (binaurally applied 1-mA current, 4 sec) with the subjects' eyes open and closed and under conditions of reversed visual perception. Horizontal reversal of the visual space was provided by using spectacles with the Dove's prisms. In series consisting of 10 sequential tests with eyes open, we observed a gradual drop in the response amplitude, while there were practically no changes in the maximum velocity of the displacement. Postural responses with eyes closed were considerably greater than those with eyes open, but their amplitude and velocity demonstrated no changes with sequential tests. Under conditions of reversal of the visual perception, both the amplitude and maximum velocity of the postural responses decreased with successive testing. Under the above conditions, at the beginning of a test series responses to vestibular stimulation were greater than those with eyes closed, but in repeated tests they decreased and attained the same magnitude as in the tests with eyes closed. Therefore, the effect of short-term adaptation to visual reversal on the system controlling vertical posture resulted in simple rejection of the information coming via the visual input. In another experimental mode, we studied the adaptation effects at longer (3 h long) visual reversal. Postural responses to galvanic stimulation of the labyrinth (monaurally applied, 2-mA current, 4 sec) were tested with 1-h-long intervals; tests with visual reversal and with eyes closed were made in a random order with each other. A 3-h-long interval with the prismatic spectacles on did not modify the amplitude and velocity of the vestibular postural responses when the tests were made with the eyes closed. When the tests were performed with the eyes open, but in the inverting spectacles, postural responses significantly decreased (by about 50-60%) to the 2nd and 3rd h of the experiment. Such selective suppression of the vestibular input under conditions of visual reversal can be interpreted as a result of adaptational transformation of the visual-vestibular relation directed toward minimization of the visual-vestibular conflict.  相似文献   

6.
In healthy subjects in the relaxed upward stance and perceiving a virtual visual environment (VVE), we recorded postural reactions to isolated visual and vestibular stimulations or their combinations. Lateral displacements of the visualized virtual scene were used as visual stimuli. The vestibular apparatus was stimulated by application of near-threshold galvanic current pulses to the proc. mastoidei of the temporal bones. Isolated VVE shifts evoked mild, nonetheless clear, body tilts readily distinguished in separate trials; at the same time, postural effects of isolated vestibular stimulation could be detected only after averaging of several trials synchronized with respect to the beginning of stimulation. Under conditions of simultaneous combined presentation of visual and vestibular stimuli, the direction of the resulting postural responses always corresponded to the direction of responses induced by VVE shifts. The contribution of an afferent volley from the vestibular organ depended on the coincidence/mismatch of the direction of motor response evoked by such a volley with the direction of response to visual stimulation. When both types of stimulations evoked unidirectional body tilts, postural responses were facilitated, and the resulting effect was greater than that of simple summation of the reactions to isolated actions of the above stimuli. In the case where isolated galvanic stimulation evoked a response opposite with respect to that induced by visual stimulation, the combined action of these stimuli of different modalities evoked postural responses identical in their magnitude, direction, and shape to those evoked by isolated visual stimulation. The above findings allow us to conclude that the effects of visual afferent input on the vertical posture under conditions of our experiments clearly dominate. In general, these results confirm the statement that neuronal structures involved in integrative processing of different afferent volleys preferably select certain type of afferentation carrying more significant or more detailed information on displacements (including oscillations) of the body in space.  相似文献   

7.
An impulsive acceleration stimulus, previously shown to activate vestibular afferents, was applied to the mastoid. Evoked EMG responses from the soleus muscles in healthy subjects (n = 10) and patients with bilateral vestibular dysfunction (n = 3) were recorded and compared with the effects of galvanic stimulation (GVS). Subjects were stimulated while having their eyes closed, head rotated, and while tonically activating their soleus muscles. Rectified EMG responses were recorded from the leg contralateral to the direction of head rotation. Responses were characterized by triphasic potentials that consisted of short-latency (SL), medium-latency (ML), and long-latency (LL) components beginning at (mean ± SD) 54.2 ± 4.8, 88.4 ± 4.7, and 121 ± 7.1 ms, respectively. Mean amplitudes for the optimum stimulus rise times were 9.05 ± 3.44% for the SL interval, 16.70 ± 4.41% for the ML interval, and 9.75 ± 4.89% for the LL interval compared with prestimulus values. Stimulus rise times of 14 and 20 ms evoked the largest ML amplitudes. GVS evoked biphasic responses (SL and ML) with similar latencies. Like GVS, the polarity of the initial interval was determined by the polarity of the stimulus and the evoked EMG response was attenuated when subjects were seated. There was no significant EMG response evoked when subjects were stimulated using 500-Hz vibration or in patients with bilateral vestibular dysfunction. Our study demonstrates that a brief lateral acceleration, likely to activate the utricle, can evoke spinal responses with properties similar to those previously shown for vestibular activation by GVS. The triphasic nature of the responses may allow the nervous system to respond differently to short compared with long-duration linear accelerations, consistent with their differing significance.  相似文献   

8.
Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.  相似文献   

9.
We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ±1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a “fixed” reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.  相似文献   

10.
Electrical vestibular stimulation is often used to assess vestibulo-motor and postural responses in both clinical and research settings. Stochastic vestibular stimulation (SVS) is a recently established technique with many advantages over its square-wave counterpart; however, the evoked muscle responses remain relatively small. Although the vestibular-evoked responses can be enhanced by increasing the stimulus amplitude, subjects often perceive these higher intensity electrical stimuli as noxious or painful. Here, we developed multisine vestibular stimulation (MVS) signals that include precise frequency contributions to increase signal-to-noise ratios (SNR) of stimulus-evoked muscle and motor responses. Subjects were exposed to three different MVS stimuli to establish that: 1) MVS signals evoke equivalent vestibulo-motor responses compared to SVS while improving subject comfort and reducing experimentation time, 2) stimulus-evoked vestibulo-motor responses are reliably estimated as a linear system and 3) specific components of the cumulant density time domain vestibulo-motor responses can be targeted by controlling the frequency content of the input stimulus. Our results revealed that in comparison to SVS, MVS signals increased the SNR 3–6 times, reduced the minimum experimentation time by 85% and improved subjective measures of comfort by 20–80%. Vestibulo-motor responses measured using both EMG and force were not substantially affected by nonlinear distortions. In addition, by limiting the contribution of high frequencies within the MVS input stimulus, the magnitude of the medium latency time domain motor output response was increased by 58%. These results demonstrate that MVS stimuli can be designed to target and enhance vestibulo-motor output responses while simultaneously improving subject comfort, which should prove beneficial for both research and clinical applications.  相似文献   

11.
Subjects kept a vertical posture, standing on a rigid support. Stability of a posture was estimated by the sizes of standard deviations (sigma) from average amplitudes of the subject's head fluctuation in respect to zero coordinates. To create a feedback on the vestibular input, transmastoidal bipolar galvanic stimulation was used. Changes of current in contour of feedback looked as linear function considering amplitude and velocity of the subject's head displacements. Varying the factors of feedback function, it was possible to reduce sigma for lateral sways increased (in comparison with their values at the quiet stance in the darkness) as a result of unilateral vibrating stimulation of m. gluteus medialis. The results specify inequality of "velocity" and "position" information for maintenance of vertical posture in different subjects. The results specify also the ability of the central nervous system (CNS) to revalue weights of various kinds of information entering via the same channel. The data confirm the hypothesis according to which galvanic vestibular input is capable to deliver in CNS and adequate information on the current orientation of the body. This information can be used for stabilization of a posture.  相似文献   

12.
In 13 healthy volunteers, we recorded stabilographic postural reactions (side inclinations of the body) to unilateral galvanic vestibular stimulation (GVS) by rectangular current pulses (4 sec long, 2, 3, 4, 5, or 6 mA). For the cathodal GVS, the dependence of the magnitude of reaction was linear within this range. The corresponding dependence for the anodal GVS was close to linear at small currents, but the increment of the magnitude became smaller with further increase in the stimulation intensity, and a plateau was formed. A significant divergence between the two curves was observed with stimulation currents 4 mA and higher. This difference can be explained considering modern concepts on the mechanism of GVS-induced effects (an increase or a decrease in the level of tonic impulsation in fibers of the vestibular nerve under the influence of polarization). Anodal GVS continues to suppress tonic activity up to the moment where all GVS-sensitive vestibular afferents stop to generate impulses; a further increase in the intensity of hyperpolarizing current is not accompanied by a decrease in the activity in the vestibular nerve and, consequently, by an increase in the magnitude of postural reactions. The tested approach can be used for qualitative estimation of the vestibular tone in humans. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 169–176, March–April, 2005.  相似文献   

13.
目的:观察前庭电刺激联合前庭康复治疗周围性眩晕的疗效。方法:在常规药物治疗基础上将2008年5月.2012年5月我科眩晕门诊收治的226例诊断明确的单侧前庭周围性眩晕患者随机分成两组:前庭康复组和前庭康复+前庭电刺激组。前庭康复组行常规前庭康复治疗,前庭康复+前庭电刺激组在药物治疗及前庭康复基础上加用前庭电刺激,即在双侧乳突采取双极直流电刺激,每次15-20分钟,每天2次,共6周。治疗前及治疗后第2、4、6周行BBS评分及计时平衡试验时间测定以评判和比较两组的疗效。结果:两组患者治疗后第2、4、6周BBS评分及计时平衡试验时间较治疗前均明显增加(P〈0.05),且B组各时点BBS评分及计时平衡试验时间均明显高于A组(P〈0.05)。结论:前庭电刺激联合前庭康复是较单纯前庭康复治疗前庭周围性眩晕更加有效的方法,其简单、无创、值得推广。  相似文献   

14.
To investigate the vestibular and somatosensory interaction in human postural control, a galvanic vestibular stimulation of cosine bell shape resulting in a small forward or backward body lean was paired with three vibrations of both soleus muscles. The induced body lean was registered by the position of the center of foot pressure (CoP). During a quiet stance with eyes closed the vibration of both soleus muscles with frequency (of) 40 Hz, 60 Hz and 80 Hz resulted in the body lean backward with velocities related to the vibration frequencies. The vestibular galvanic stimulation with the head turned to the right caused forward or backward modification of CoP backward response to the soleus muscles vibration and peaked at 1.5-2 s following the onset of the vibration. The effect of the paired stimulation was larger than the summation of the vestibular stimulation during the quiet stance and a leg muscle vibration alone. The enhancement of the galvanic stimulation was related to the velocity of body lean induced by the leg muscle vibration. The galvanic vestibular stimulation during a faster body movement had larger effects than during a slow body lean or the quiet stance. The results suggest that velocity of a body postural movement or incoming proprioceptive signal from postural muscles potentiate the effects of simultaneous vestibular stimulations on posture.  相似文献   

15.
Here, we present findings from a three-step investigation of the effect of galvanic vestibular stimulation (GVS) in normal subjects and in subjects undergoing vestibular rehabilitation (VR). In an initial study, we examined the body sway of 10 normal subjects after one minute of 2 mA GVS. The effect of the stimulation lasted for at least 20 minutes in all subjects and up to two hours in 70% of the subjects. We then compared a group of patients who received conventional VR (40 patients) with a group that received a combination of VR and GVS. Results suggest a significant improvement in the second group. Finally, we attempted to establish the optimal number of GVS sessions and to rule out a placebo effect. Fifteen patients received "systematic" GVS: five sessions, once a week. Five patients received "nonsystematic" galvanic stimulation in a sham protocol, which included two stimulations of the clavicle. These data were analyzed with Fisher's exact test and indicated that the best results were obtained after three sessions of GVS and no placebo effect was observed.  相似文献   

16.
Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes.  相似文献   

17.
Ocular vestibular evoked myogenic potentials (oVEMPs) are a recently described clinical measure of the vestibulo-ocular reflex. Studies demonstrating differences in frequency tuning between air-conducted and bone-conducted (BC) oVEMPs suggest a separate vestibular (otolith) origin for each stimulus modality. In this study, 10 healthy subjects were stimulated with BC stimuli using a hand-held minishaker. Frequencies were tested in the range of 50-1,000 Hz using both a constant-force and constant-acceleration method. Subjects were stimulated at the mastoid process and the forehead. For constant-force stimulation at both sites, maximum acceleration occurred around 100 Hz, in differing axes. Both forms of stimulation had low-frequency peaks of oVEMP amplitudes (constant force: mastoid, 80-150 Hz; forehead, 50-125 Hz; constant acceleration: mastoid, 100-200 Hz; forehead, 80-150 Hz), for both sites of application, despite differences in the magnitude and direction of evoked head acceleration. For mastoid stimulation, ocular responses changed from out of phase to in phase for 400 Hz and above. Our results demonstrate that BC stimuli show tuning around 100 Hz, independent of stimulus site, that is not due to skull properties. The findings are consistent with an effect on a receptor with a resonance around 100 Hz, most likely the utricle.  相似文献   

18.
Anatomical studies have demonstrated that the vestibular nuclei project to nucleus tractus solitarius (NTS), but little is known about the effects of vestibular inputs on NTS neuronal activity. Furthermore, lesions of NTS abolish vomiting elicited by a variety of different triggering mechanisms, including vestibular stimulation, suggesting that emetic inputs may converge on the same NTS neurons. As such, an emetic stimulus that activates gastrointestinal (GI) receptors could alter the responses of NTS neurons to vestibular inputs. In the present study, we examined in decerebrate cats the responses of NTS neurons to rotations of the body in vertical planes before and after the intragastric administration of the emetic compound copper sulfate. The activity of more than one-third of NTS neurons was modulated by vertical vestibular stimulation, with most of the responsive cells having their firing rate altered by rotations in the head-up or head-down directions. These responses were aligned with head position in space, as opposed to the velocity of head movements. The activity of NTS neurons with baroreceptor, pulmonary, and GI inputs could be modulated by vertical plane rotations. However, injection of copper sulfate into the stomach did not alter the responses to vestibular stimulation of NTS neurons that received GI inputs, suggesting that the stimuli did not have additive effects. These findings show that the detection and processing of visceral inputs by NTS neurons can be altered in accordance with the direction of ongoing movements.  相似文献   

19.
In normal subjects, electrical stimulation of the labyrinth with surface electrodes located on the mastoid process induced illusions of shifting of a fixed point of light in darkness similar to the oculogyral illusion induced by rotatory vestibular stimulation. Monoaural anodal stimulation of the right labyrinth induced apparent shift of the target to the left; with cathodal stimulation, it shifted to the right; threshold current was 0.35–0.6 mA. When the current strength increased, the amplitude and rate of apparent movement of the target increased approximately linearly. With binaural, bipolar stimulation, the illusory movement of the target was toward the site of the cathode and the threshold decreased by 1.5–2.5 times. With binaural, monopolar stimulation, the target seemed to shift along the vertical and the threshold current was 1.4–3.0 mA. Eye movement appeared at substantially higher currents than those resulting in apparent movement of the target. It is suggested that visual illusions are linked not to vestibular eye-movement reactions, but to the effect vestibular signals have on the spatial perception system.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 321–327, May–June, 1991.  相似文献   

20.
Daily activities, such as walking, may require dynamic modulation of vestibular input onto motoneurons. This dynamic modulation is difficult to identify in humans due to limitations in the delivery and analysis of current vestibular probes, such as galvanic vestibular stimulation. Stochastic vestibular stimulation, however, provides an alternative method to extract human vestibular reflexes. Here, we used time-dependent coherence and time-dependent cross-correlation, coupled with stochastic vestibular stimulation, to investigate the phase dependency of human vestibular reflexes during locomotion. We found that phase-dependent activity from the medial gastrocnemius muscles is correlated with the vestibular signals over the 2- to 20-Hz bandwidth during the stance phase of locomotion. Vestibular-gastrocnemius coherence and time-dependent cross-correlations reached maximums at 21 ± 4 and 23 ± 8% of the step cycle following heel contact and before the period of maximal electromyographic activity (38 ± 5%). These results demonstrate 1) the effectiveness of these techniques in extracting the phase-dependent modulation of vestibulomuscular coupling during a cyclic task; 2) that vestibulomuscular coupling is phasically modulated during locomotion; and 3) that the period of strongest vestibulomuscular coupling does not correspond to the period of maximal electromyographic activity in the gastrocnemius. Therefore, we have shown that stochastic vestibular stimulation, coupled with time-frequency decomposition, provides an effective tool to assess the contribution of vestibular ex-afference to the muscular control during locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号