首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetics of thrombin-induced release and activation of platelet factor V   总被引:1,自引:0,他引:1  
The kinetics of thrombin-induced platelet factor V activation were studied in suspension of washed human platelets. The effect of thrombin in stimulating the release reaction could be separated from its effect on factor V activation by use of a potent inhibitor of the release reaction, the prostacyclin analogue ZK 36374. When platelets were incubated with ZK 36374 prior to stimulation with thrombin, the amount of ZK 36374 required to inhibit 50% of factor Va formation was 15 pM. ZK 36374 at a final concentration of 1 nM was found to block instantaneously and completely the release of factor Va, whereas it has no effect neither on platelet factor V activation nor on the factor Va assay. By varying the time interval between the addition of thrombin (0.5 nM) and ZK 36374 to suspensions of 4.6 X 10(6) platelets/ml the rate of factor V release was found to be 12 pM factor V/min. In the absence of ZK 36374 the total amount of factor V released was 8 pM, whereas Triton X-100-treated platelets gave 13 pM factor V. It appeared that the amount of factor V that could be released was dependent on the thrombin concentration. Maximum release was obtained at 1 nM thrombin. The rate of factor V release increased in proportion to the thrombin concentration. The rate of factor V activation was found to be proportional to the thrombin concentration as well as to the amount of released factor V. When 4.6 X 10(6) platelets/ml were activated by 0.5 nM thrombin, the rates of factor V activation were found to be 0.3 pM and 1.2 pM factor Va/min at 20% and 90% completion of the release reaction. Therefore, the rate of factor V release was at least one order of magnitude faster than the rate of factor V activation. The kinetics of thrombin-induced platelet factor V activation were compared to those of plasma factor V activation in platelet-rich and platelet-free plasma. The results clearly demonstrate that platelets have no effect on the rate of factor V activation and that the kinetics of plasma factor V activation are identical to those of platelet factor V activation.  相似文献   

2.
Thrombin plays a central role in normal and abnormal hemostatic processes. It is assumed that alpha-thrombin activates platelets by hydrolyzing the protease-activated receptor (PAR)-1, thereby exposing a new N-terminal sequence, a tethered ligand, which initiates a cascade of molecular reactions leading to thrombus formation. This process involves cross-linking of adjacent platelets mediated by the interaction of activated glycoprotein (GP) IIb/IIIa with distinct amino acid sequences, LGGAKQAGDV and/or RGD, at each end of dimeric fibrinogen molecules. We demonstrate here the existence of a second alpha-thrombin-induced platelet-activating pathway, dependent on GP Ib, which does not require hydrolysis of a substrate receptor, utilizes polymerizing fibrin instead of fibrinogen, and can be inhibited by the Fab fragment of the monoclonal antibody LJIb-10 bound to the GP Ib thrombin-binding site or by the cobra venom metalloproteinase, mocarhagin, that hydrolyzes the extracellular portion of GP Ib. This alternative alpha-thrombin pathway is observed when PAR-1 or GP IIb/IIIa is inhibited. The recognition sites involved in the cross-linking of polymerizing fibrin and surface integrins via the GP Ib pathway are different from those associated with fibrinogen. This pathway is insensitive to RGDS and anti-GP IIb/IIIa antibodies but reactive with a mutant fibrinogen, gamma407, with a deletion of the gamma-chain sequence, AGDV. The reaction is not due to simple trapping of platelets by the fibrin clot, since ligand binding, signal transduction, and second messenger formation are required. The GP Ib pathway is accompanied by mobilization of internal calcium and the platelet release reaction. This latter aspect is not observed with ristocetin-induced GP Ib-von Willebrand factor agglutination nor with GP Ib-von Willebrand factor-polymerizing fibrin trapping of platelets. Human platelets also respond to gamma-thrombin, an autoproteolytic product of alpha-thrombin, through PAR-4. Co-activation of the GP Ib, PAR-1, and PAR-4 pathways elicit synergistic responses. The presence of the GP Ib pathway may explain why anti-alpha-thrombin/anti-platelet regimens fail to completely abrogate thrombosis/restenosis in the cardiac patient.  相似文献   

3.
Cytoplasmic Ca2+ is necessary for thrombin-induced platelet activation   总被引:1,自引:0,他引:1  
alpha-Thrombin induces a dose-dependent rapid transient increase in platelet cytosolic Ca2+ levels, coming solely from intracellular stores, since EGTA has no effect. In contrast, the post-stimulation equilibrium [Ca2+]in depends upon an influx from the extracellular milieu, and is lower in the presence of EGTA. We measured the Ca2+ transient (with Indo-1, 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2'-amino-5'-methylp henoxy)- ethane-N,N,N',N'-tetraacetic acid), cytosolic alkalinization (with BCECF, 2',7-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein), membrane depolarization (with diS-C3-(5), 3,3'-dipropylthiodi-carbocyanide iodide), and degranulation (by beta-glucuronidase release) induced in washed human platelets by 9 nM thrombin in the absence or presence of extracellular or intracellular Ca2+ chelating agents (EGTA and BAPTA, 5,5'-dimethyl-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, respectively). Platelets loaded simultaneously with 2 microM Indo-1 and 15 microM BAPTA (each as the acetoxymethyl ester) before addition of thrombin exhibited no cytoplasmic Ca2+ transient or alkalinization, no depolarization or degranulation. Replenishment of such cells with extracellular CaCl2 restored resting [Ca2+]in. Upon stimulation with 9 nM thrombin these replenished platelets exhibited no Ca2+ transient, and a slow gradual increase in [Ca2+]in from extracellular stores, a slow alkalinization and depolarization, and partial degranulation, all abolished by extracellular EGTA. Thus thrombin-induced platelet activation exhibits a biphasic Ca2+ requirement: the initial transient increase in [Ca2+]in comes from intracellular stores only, while the later steps of depolarization, alkalinization, and degranulation can proceed, albeit more slowly, if only extracellular Ca2+ is available.  相似文献   

4.
Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibalpha (glycocalicin) without activation, we now report that factor XIIa (0. 37 microm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibalpha. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo.  相似文献   

5.
Inhibitors of calcium-dependent proteases (calpains) such as leupeptin and antipain have been shown to selectively inhibit platelet activation by thrombin. Based upon this observation, it has been proposed that calpains play a role in the initiation of platelet activation. In the present studies, we have examined the effect of leupeptin on the earliest known event in thrombin-induced platelet activation: the interaction between the agonist, its receptors, and the guanine nucleotide-binding proteins which stimulate phospholipase C (Gp) and inhibit adenylyl cyclase (Gi). We found that leupeptin inhibited thrombin's ability to stimulate phosphoinositide hydrolysis, suppress cAMP formation, and dissociate Gp and Gi into subunits. Leupeptin had no effect, however, on the same responses to other agonists or on thrombin binding to platelets. Although these observations might suggest, as others have concluded, that calpain is involved in the initiation of platelet activation by thrombin, we also found that: 1) substituting platelet membranes for intact platelets and decreasing the free Ca2+ concentration below the threshold required for calpain activation did not diminish the effects of leupeptin on phosphoinositide hydrolysis and cAMP formation, 2) washing the platelets after incubation with leupeptin reversed the effects of the inhibitor, 3) permeabilizing the platelets with saponin did not enhance the inhibitory effects of leupeptin, and 4) leupeptin inhibited the proteolysis of fibrinogen and the hydrolysis of S2238 by thrombin. Similar results in these assays were obtained with antipain. Therefore, our observations suggest that the inhibition of platelet activation by leupeptin is due to a direct interaction with thrombin and need not reflect a role for calpain in the initiation of platelet activation.  相似文献   

6.
Summary Platelet microparticles (MPs) are membrane vesicles shed by platelets after activation, and carry antigens characteristic of intact platelets, such as glycoprotein (GP) IIb/IIIa, GPIb and P-selectin. Elevated platelet MPs have been observed in many disorders in which platelet activation is documented. Recently, platelet GPIb has been implicated in the mediation of platelet–leukocyte interaction via binding to its ligand Mac-1 on leukocyte. The role of GPIb for mediating adhesion-activation interactions between platelet MPs and leukocytes has not been clarified. In this study we investigate the role of GPIb in the interplay between platelet MPs and neutrophils. Platelet MPs were obtained from collagen-stimulated platelet-rich plasma (PRP). In a study model of neutrophil aggregation, platelet MPs can serve a bridge to support neutrophil aggregation under venous level shear stress, suggesting that platelet MPs may enhance leukocyte aggregation, which would bear clinical relevance in diseases where the platelet MPs are elevated. The level of aggregation can be reduced by GPIb blocking antibodies, AP1 and SZ2, but not by anti-CD18 mAb. The GPIb blocking antibodies also decreased platelet MP-mediated neutrophil activation, including β2 integrin expression, adherence-dependent superoxide release and platelet MP-mediated neutrophil adherence to immobilized fibrinogen. Our data provide the evidence for the involvement of GPIb–Mac-1 interaction in the cross-talk between platelet MPs and neutrophils.  相似文献   

7.
Human platelet glycoprotein V (Mr 82,000) is a surface glycoprotein and a substrate for thrombin, undergoing proteolytic cleavage by thrombin and releasing a soluble fragment, glycoprotein Vfl (Mr 69,000). It does not appear to be the receptor for thrombin's agonist effect on platelets. A congenital platelet disorder, Bernard-Soulier syndrome, is marked by a deficiency of glycoprotein V and two other surface glycoproteins, Ib-IX. The latter two, Ib-IX, constitute the platelet receptor for von Willebrand factor, mediate arterial platelet adhesion, and contain unique 24-amino acid sequences, termed "leucine-rich glycoprotein" segments. The segments relate to adhesive function and distinguish the leucine-rich glycoprotein family. Surface glycoprotein V is not physically associated with Ib-IX nor does it bind to von Willebrand factor. To date, no common denominator has been found that explains the combined deficiency of glycoproteins V and Ib-IX in Bernard-Soulier syndrome. This study describes the isolation of glycoprotein V/anti-glycoprotein V antibody and the analysis of three glycoprotein V peptides that contain "leucine-rich" sequences. Therefore, glycoprotein V shares the "leucine-rich" structure with platelet glycoproteins Ib-IX and belongs to the family of leucine-rich glycoproteins.  相似文献   

8.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

9.
Dehydroepiandrosterone (DHEA) and its sulfated form, DHEA-S, are the most abundant steroids circulating in human blood. DHEA stimulates endothelial cells to release high amounts of nitric oxide in the circulation. Nitric oxide activates guanylyl cyclase in platelets thus decreasing the responsiveness of these cells to physiological agonists. However, the impact of DHEA-S and DHEA on platelet function and their possible role in modulating the response of human platelets to physiological agonists were not yet investigated. Here, DHEA-S, but not DHEA, inhibited in vitro thrombin-dependent platelet aggregation in a dose-dependent manner. DHEA-S exerted this effect by decreasing thrombin-dependent dense granule secretion, and so impairing the positive feed-back loop provided by ADP. Furthermore, DHEA-S inhibited thrombin-dependent activation of Akt, ERK1/2, and p38 MAP kinase. Although both DHEA-S and DHEA directly activated in platelets the inhibitory cGMP/PGK/VASP pathway, these events were not responsible for the inhibitory action of DHEA-S in platelets. In addition DHEA-S acted in synergism with nitric oxide in inhibiting platelet aggregation. In conclusion DHEA-S inhibited platelet activation caused by a mild stimulus without completely hampering platelet functionality and thus DHEA-S may participate in the physiological mechanisms that maintain circulating platelets in a resting state. The role played by DHEA-S could be relevant mainly when the functionality of the vascular endothelium is compromised.  相似文献   

10.
Recently a thrombin receptor with a unique mechanism of activation was cloned from a megakaryocyte-like cell line (Vu et al., Cell 64:1057-1068, 1991). Thrombin cleaves a portion of this receptor creating a new N-terminus that acts as a "tethered-ligand" to activate the receptor. A thrombin receptor activating peptide (SFLLRNPNDKYEPF) homologous to the new N-terminus was shown to activate platelets. We synthesized this peptide and demonstrated that it desensitized platelets to activation by low concentrations of alpha-thrombin but not gamma-thrombin. We also synthesized a thrombin exosite inhibitor (BMS 180742) that inhibited platelet aggregation induced by low, but not high, concentrations of alpha-thrombin. In contrast, a thrombin active site inhibitor, N alpha-(2-naphthylsulfonyl-glycyl)-D,L-amidinophenylalanylpiperi dide, competitively inhibited thrombin-induced platelet aggregation. We conclude that thrombin-induced platelet activation is mediated by at least two pathways: one activated by low concentrations of alpha-thrombin and blocked by a thrombin exosite inhibitor that appears to be coupled to the "tethered-ligand" thrombin receptor, and another that is stimulated by higher concentrations of alpha-thrombin and by gamma-thrombin and does not require the thrombin exosite for activation. Both pathways are blocked by a thrombin active site inhibitor.  相似文献   

11.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

12.
When platelets bind certain specific ligands they are induced to secrete the contents of their cytoplasmic granules and to aggregate. Studies of the molecular events accompanying this vital physiological response have led to a greater understanding of cell activation in general since the pathways involved are common to a number of cell types. By contrast most of the information about the cell surface molecules that initiate signal transduction has emerged from work on T lymphocyte activation, a process essential to the initiation of the immune response. We have described an activation antigen on T lymphocytes that is involved in the differentiation of these cells. In the present report it is demonstrated that the antigen is expressed on the platelet membrane with about 1,200 copies/platelet. A monoclonal antibody detecting this antigen stimulates platelet secretion and aggregation with a half-maximal response at approximately 10(-8) M. Characterization of the antigen, termed PTA1, reveals a glycoprotein of Mr 67,000 showing extensive N-linked carbohydrate, much of which appears to be heavily sialated. The amino-terminal sequence of PTA1, EEVLWHTSVPFAEXMSLEXVYPSM, indicates that the protein has not previously been characterized. Preliminary investigation of the mechanism by which PTA1 mediates platelet activation suggests involvement of protein kinase C and the 47-kDa protein of platelets is rapidly phosphorylated upon antibody-mediated activation. During this process PTA1 is also phosphorylated, as it is following platelet activation by the other agonists, collagen, thrombin, and 12-O-tetradecanoylphorbol 13-acetate. These results provide the first example of a cell surface glycoprotein that is directly involved in both platelet and T lymphocyte activation.  相似文献   

13.
The possibility that thrombin-induced platelet reactivity could occur via both a receptor-related and a proteolytic process was examined. Thrombin elicited the formation of considerably more [32P]phosphatidic acid (an index of phospholipase C catalysed phosphoinositide metabolism) than did platelet activating factor, 5-hydroxytryptamine, ADP, and the thromboxane A2 analogue EP171, when these agents were added either alone or in combination. Co-addition of thrombin and EP171 did not evoke significantly more [32P]phosphatide acid than did thrombin alone. The protease inhibitor leupeptin, decreased but did not abolish [32P]phosphatidic acid formation elicited by either thrombin alone or thrombin in combination with EP171. The serine protease, trypsin, stimulated an increase in [32P]phosphatidic acid and this effect was additive with that of EP171. This augmentation by trypsin of EP171-induced [32P]phosphatidic acid formation was inhibited by leupeptin. These results are consistent with the concept that thrombin-induced activation of phospholipase C occurs by two distinct mechanisms: one via proteolysis, which is sensitive to leupeptin, and the other via receptor activation, a process shared by EP171. The individual components of this dual mechanism can be mimicked by the co-addition of a receptor-directed agonist (EP171) and a proteolytic agent (trypsin).  相似文献   

14.
Gab2, a recently identified docking protein, contains a pleckstrin homology domain and potential binding sites for SH2 and SH3 domain-containing proteins. Gab2 has been shown to support growth, differentiation, and function in a number of haematopoietic cells, although its role in platelets remains to be determined. Here we report that cross-linking of the collagen receptor GPVI by the snake venom toxin convulxin stimulates tyrosine phosphorylation of Gab2. Furthermore, platelet aggregation induced by submaximal concentrations of convulxin is attenuated in the absence of Gab2, although recovery is seen with higher concentrations of the toxin. Consistent with this, tyrosine phosphorylation of Fc receptor gamma-chain, Syk, Btk, and phospholipase Cgamma2 by convulxin is reduced in the absence of Gab2. In comparison, the G protein-coupled receptor agonist, thrombin, does not induce phosphorylation of Gab2 and aggregation is unaltered in the absence of the toxin. These findings provide evidence for a functional role of Gab2 in supporting platelet activation by GPVI.  相似文献   

15.
Platelets play essential roles in hemostasis and thrombosis by aggregating with each other. However, the molecular mechanism governing platelet aggregation is not yet fully understood. Here, we established an assay system using platelets permeabilized with streptolysin-O to analyze mechanism of the thrombin-induced aggregation, focusing upon a controversial issue in the field whether small GTPase Rho regulates the aggregation. Incubation of the permeabilized platelets with Rho GDP-dissociation inhibitor, an inhibitory regulator for Rho family GTPases, extracted Rho family proteins extensively from the plasma and intracellular membranes, and inhibited the thrombin-induced aggregation. Incubation of the permeabilized platelets with botulinum exoenzyme C3, which specifically inhibits Rho function by ADP-ribosylating it, abolished the thrombin-induced aggregation. Thus, Rho is involved in thrombin-induced aggregation of platelets.  相似文献   

16.
Prior treatment with pertussis toxin of G0-arrested hamster fibroblasts (CCL39) results in a dose-dependent inhibition of two early events of the mitogenic response elicited by alpha-thrombin: accumulation of inositol phosphates in Li+-treated cells, and activation of the Na+/H+ antiport, measured either by the amiloride-sensitive 22Na+ influx or by the increase in intracellular pH. At 10(-1) U/ml of alpha-thrombin, the maximal inhibition was approximately 50% for these two early cellular responses, but the pertussis toxin effect was more pronounced at lower thrombin concentrations. In contrast, pertussis toxin does not affect the Na+/H+ antiport activation induced by phorbol esters or EGF, the action of which is not mediated by the phosphoinositide-metabolizing pathway in CCL39 cells. Therefore, our data suggest the following. A GTP-binding regulatory protein is probably involved in signal transduction between thrombin receptors and the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. This regulation does not seem to be exerted via modulations of cyclic AMP levels. The thrombin-induced activation of Na+/H+ antiport is, at least in part, mediated by the protein kinase C, as a consequence of stimulation of phosphatidylinositol turnover.  相似文献   

17.
The influence of competitive synthetic thrombin inhibitors of the benzamidine type on the thrombin-platelet reaction was studied. The benzamidine derivatives tested inhibited thrombin-induced aggregation and 5-HT release in dependence upon their affinity for the enzyme. Accumulation of platelets in the lung of rats and the fall in platelet counts in the blood of rabbits induced by thrombin infusion were prevented by infusion of the inhibitors, as illustrated by example of 3-TAPAP. The thrombin-platelet reaction was inhibited at higher doses of inhibitor than those required for inhibition of coagulation. In this way, the inhibitors may exert a different influence on the various haemostatic steps.  相似文献   

18.
Using new-developed method of aggregates radius measurement in suppression of washed human platelets, it has been shown, that HDL, in concentration of 190 ug/ml and in higher ones, totally inhibited aggregation, induced by 0.075 U/ml thrombin. For the same effect on aggregation, induced by 0.225 U/ml thrombin, HDL in concentration of 1320 ug/ml were needed.  相似文献   

19.
We have obtained evidence that selective inhibition of high affinity thrombin-binding sites located in the amino-terminal domain of the membrane glycoprotein (GP) Ib alpha results in impaired platelet activation, as shown by abrogation or reduction of the following responses induced in normal platelets by exposure to less than 1 nM alpha-thrombin: (i) increase in intracellular ionized calcium concentration ([Ca2+]i), (ii) release of dense granule content, (iii) binding of fibrinogen, (iv) aggregation. An anti-GP Ib monoclonal antibody, LJ-Ib 10, which does not inhibit von Willebrand factor binding to platelets, obliterated the high affinity alpha-thrombin-binding sites on normal platelets. Isotherms of alpha-thrombin binding to normal platelets treated with saturating amounts of the antibody were virtually identical to those obtained with platelets from a patient with classical Bernard-Soulier syndrome. In parallel with decreased binding of the agonist, this antibody caused 50% inhibition of the maximal extent of platelet aggregation and 90% inhibition of ATP release induced by 0.3 nM alpha-thrombin. By inhibiting alpha-thrombin binding to GP Ib, the antibody prevented the activation of platelets exposed to low concentrations of the agonist, as demonstrated by abrogation of the increase in intraplatelet ionized calcium concentration induced in control platelets by 0.18 nM alpha-thrombin; under these conditions, fibrinogen binding was inhibited by 84%. Therefore, there is a correlation between occupancy of the high affinity sites for alpha-thrombin on GP Ib alpha and platelet activation, secretion, and aggregation, suggesting that GP Ib alpha is part of an alpha-thrombin receptor relevant for platelet function.  相似文献   

20.
Thrombin treated with phenylmethanesulphonyl fluoride, like active enzyme, promotes modifications to human platelet cytoskeleton. The removal of active thrombin by hirudin partially reverses this process. Chymotrypsin-treated platelets do not modify their cytoskeleton after thrombin stimulus, but are still able to increase their adhesiveness to collagen. It is concluded that thrombin influences the cytoskeleton and adhesion by non-enzymic mechanisms which may be mediated by different modulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号