首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oogenesis in Hydra occurs in so-called egg patches containing several thousand germ cells. Only one oocyte is formed per egg patch; the remaining germ cells differentiate as nurse cells. Whether and how nurse cells contribute cytoplasm to the developing oocyte has been unclear. We have used tissue maceration to characterize the differentiation of oocytes and nurse cells in developing egg patches. We show that nurse cells decrease in size at the same time that developing oocytes increase dramatically in volume. Nurse cells are also tightly attached to oocytes at this stage and confocal images of egg patches stained with the fluorescent membrane dye FM 4-64 clearly show large gaps (10 microm) in the cell membranes separating nurse cells from the developing oocyte. We conclude that nurse cells directly transfer cytoplasm to the developing oocyte. Following this transfer of cytoplasm, nurse cells undergo apoptosis and are phagocytosed by the oocyte. These results demonstrate that basic mechanisms of alimentary oogenesis typical of Caenorhabditis and Drosophila are already present in the early metazoan Hydra.  相似文献   

2.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

3.
4.
Notch signaling is essential for cell-fate specification in metazoans, and dysregulation of the pathway leads to a variety of human diseases including heart and vascular defects as well as cancer. Glycosylation of the Notch extracellular domain has emerged as an elegant means for regulating Notch activity, especially since the discovery that Fringe is a glycosyltransferase that modifies O-fucose in 2000. Since then, several other O-glycans on the extracellular domain have been demonstrated to modulate Notch activity. Here we will describe recent results on the molecular mechanisms by which Fringe modulates Notch activity, summarize recent work on how O-glucose, O-GlcNAc, and O-GalNAc glycans affect Notch, and discuss several human genetic disorders resulting from defects in Notch glycosylation.  相似文献   

5.
In this paper we have investigated the developmental–genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells.  相似文献   

6.
The Notch signal transduction pathway regulates the decision to proliferate versus differentiate. Although there are a myriad of mouse models for the Notch pathway, surprisingly little is known about how these genes regulate early eye development, particularly in the anterior lens. We employed both gain-of-function and loss-of-function approaches to determine the role of Notch signaling in lens development. Here we analyzed mice containing conditional deletion of the Notch effector Rbpj or overexpression of the activated Notch1 intracellular domain during lens formation. We demonstrate distinct functions for Notch signaling in progenitor cell growth, fiber cell differentiation and maintenance of the transition zone. In particular, Notch signaling controls the timing of primary fiber cell differentiation and is essential for secondary fiber cell differentiation. Either gain or loss of Notch signaling leads to formation of a dysgenic lens, which in loss-of-function mice undergoes a profound postnatal degeneration. Our data suggest both Cyclin D1 and Cyclin D2, and the p27Kip1 cyclin-dependent kinase inhibitor act downstream of Notch signaling, and define multiple critical functions for this pathway during lens development.  相似文献   

7.
8.
9.
10.
Understanding the mechanisms controlling the stability of the differentiated cell state is a fundamental problem in biology. To characterize the critical regulatory events that control stem cell behavior and cell plasticity in vivo in an organism at the base of animal evolution, we have generated transgenic Hydra lines [Wittlieb, J., Khalturin, K., Lohmann, J., Anton-Erxleben, F., Bosch, T.C.G., 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 103, 6208-6211] which express eGFP in one of the differentiated cell types. Here we present a novel line which expresses eGFP specifically in zymogen gland cells. These cells are derivatives of the interstitial stem cell lineage and have previously been found to express two Dickkopf related genes [Augustin, R., Franke, A., Khalturin, K., Kiko, R., Siebert, S. Hemmrich, G., Bosch, T.C.G., 2006. Dickkopf related genes are components of the positional value gradient in Hydra. Dev. Biol. 296 (1), 62-70]. In the present study we have generated transgenic Hydra in which eGFP expression is under control of the promoter of one of them, HyDkk1/2/4 C. Transgenic Hydra recapitulate faithfully the previously described graded activation of HyDkk1/2/4 C expression along the body column, indicating that the promoter contains all elements essential for spatial and temporal control mechanisms. By in vivo monitoring of eGFP+ gland cells, we provide direct evidence for continuous transdifferentiation of zymogen cells into granular mucous cells in the head region. We also show that in this tissue a subpopulation of mucous gland cells directly derives from interstitial stem cells. These findings indicate that both stem cell-based mechanisms and transdifferentiation are involved in normal development and maintenance of cell type complexity in Hydra. The results demonstrate a remarkable plasticity in the differentiation capacity of cells in an organism which diverged before the origin of bilaterian animals.  相似文献   

11.
During Hydra oogenesis, an aggregate of germ cells differentiates into one oocyte and thousands of nurse cells. Nurse cells display a number of features typical of apoptotic cells and are phagocytosed by the growing oocyte. Yet, these cells remain unchanged in morphology and number until hatching of the polyp, which can occur up to 12 months later. Treatments with caspase inhibitors can block oocyte development during an early phase of oogenesis, but not after nurse cell phagocytosis has taken place, indicating that initiation of nurse cell apoptosis is essential for oocyte development. The genomic DNA of the phagocytosed nurse cells in the oocyte and embryo shows large-scale fragmentation into 8- to 15-kb pieces, but there is virtually none of the internucleosomal degradation typically seen in apoptotic cells. The arrested nurse cells exhibit high levels of peroxidase activity and are prevented from entering the lysosomal pathway. After hatching of the polyp, apoptosis is resumed and the nurse cells are degraded within 3 days. During this final stage, nurse cells become TUNEL-positive and enter secondary lysosomes in a strongly degraded state. Our results suggest that nurse cell apoptosis consists of caspase-dependent and caspase-independent phases. The independent phase can be arrested at an advanced stage for several months, only to resume after the primary polyp hatches.  相似文献   

12.
Notch信号通路是在进化上非常保守的单次跨膜信号受体蛋白家族,广泛表达于脊椎动物与无脊椎动物中,主要由Notch受体、Notch配体及细胞内效应分子CSL蛋白组成。Notch信号通路是多种组织和器官早期发育所必需的细胞间调节信号,参与对细胞增殖、分化、凋亡的调控。近年的研究表明,Notch信号通路参与肺纤维化的发生发展,阻断或激活这一途径可以影响肺纤维化的进展,本文就Notch信号通路与肺纤维化的关系的研究进展做一综述。  相似文献   

13.
Notch signaling has been recently shown to have a fundamental role in stem cell maintenance and control of proper homeostasis in the intestine of different species. Here, we briefly review the current literature on Notch signals in the intestine of Drosophila, Zebrafish and the mouse, and try to highlight conserved and divergent Notch functions across species. Notch signals show a remarkably conserved role in skewing cell fate choices in intestinal lineages throughout evolution. Genetic analysis demonstrates that loss of Notch signaling invariably leads to increased numbers of secretory cells and loss of enterocytes, while gain of Notch function will completely block secretory cell differentiation. Finally, we discuss the potential contribution of Notch signaling to the initiation of colorectal cancer by controlling the maintenance of the undifferentiated state of intestinal neoplastic cells and speculate on the therapeutic consequences of affecting cancer stem cells.  相似文献   

14.
Temporal and spatial regulation of morphogenesis is pivotal to the formation of organs from simple epithelial tubes. In a genetic screen for novel genes controlling cell movement during posterior foregut development, we have identified and molecularly characterized two alleles of the domeless gene which encodes the Drosophila Janus kinase (JAK)/STAT receptor. We demonstrate that mutants for domeless or any other known component of the canonical JAK/STAT signaling pathway display a failure of coordinated cell movement during the development of the proventriculus, a multiply folded organ which is formed by stereotyped cell rearrangements in the posterior foregut. Whereas the JAK/STAT receptor is expressed in all proventricular precursor cells, expression of upd encoding its ligand and of STAT92E, the signal transducer of the pathway, is locally restricted to cells that invaginate during proventriculus development. We demonstrate by analyzing gene expression mediated by a model Notch response element and by studying the expression of the Notch target gene short stop, which encodes a cytoskeletal crosslinker protein, that JAK/STAT signaling is required for the activation of Notch-dependent gene expression in the foregut. Our results provide strong evidence that JAK/STAT and Notch signaling cooperate in the regulation of target genes that control epithelial morphogenesis in the foregut.  相似文献   

15.
16.
17.
Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 h APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints.  相似文献   

18.
Cells receive and interpret extracellular signals to regulate cellular responses such as proliferation, cell survival and differentiation. However, proper inactivation of these signals is critical for appropriate homeostasis. Cbl proteins are E3-ubiquitin ligases that restrict receptor tyrosine kinase (RTK) signaling, most notably EGFR (Epidermal Growth Factor Receptor), via the endocytic pathway. Consistently, many mutant phenotypes of Drosophila cbl (D-cbl) are due to inappropriate activation of EGFR signaling. However, not all D-cbl phenotypes can be explained by increased EGFR activity. Here, we report that D-Cbl also negatively regulates Notch activity during eye and wing development. D-cbl produces two isoforms by alternative splicing. The long isoform, D-CblL, regulates the EGFR. We found that the short isoform, D-CblS, preferentially restricts Notch signaling. Specifically, our data imply that D-CblS controls the activity of the Notch ligand Delta. Taken together, these data suggest that D-Cbl controls the EGFR and Notch/Delta signaling pathways through production of two alternatively spliced isoforms during development in Drosophila.  相似文献   

19.
Zheng M  Zhang Z  Zhao X  Ding Y  Han H 《遗传学报》2010,37(9):573-582
The retina is one of the most essential elements of vision pathway in vertebrate. The dysplasia of retina cause congenital blindness or vision disability in individuals, and the misbalance in adult retinal vascular homeostasis leads to neovaseularization-associated diseases in adults, such as diabetic retinopathy or age-related macular degeneration. Many developmental signaling pathways are involved in the process of retinal development and vascular homeostasis. Among them, Notch signaling pathway has long been studied, and Notch signaling-interfered mouse models show both neural retina dysplasia and vascular abnormality. In this review, we discuss the roles of Notch signaling in the maintenance of retinal progenitor cells, specification of retinal neurons and glial cells, and the sustaining of retina vascular homeostasis, especially from the aspects of conditional knockout mouse models. The potential of Notch signal mampulation may provide a powerful cell fate- and neovascularization-controlling tool that could have important applications in la'eatment of retinal diseases.  相似文献   

20.
Notch (N) is a single-pass transmembrane receptor. The N signaling pathway is an evolutionarily conserved mechanism that controls various cell-specification processes. Drosophila Deltex (Dx), a RING-domain E3 ubiquitin ligase, binds to the N intracellular domain, promotes N’s endocytic trafficking to late endosomes, and was proposed to activate Suppressor of Hairless [Su(H)]-independent N signaling. However, it has been difficult to evaluate the importance of dx, because no null mutant of a dx family gene has been available in any organism. Here, we report the first null mutant allele of Drosophila dx. We found that dx was involved only in the subsets of N signaling, but was not essential for it in any developmental context. A strong genetic interaction between dx and Su(H) suggested that dx might function in Su(H)-dependent N signaling. Our epistatic analyses suggested that dx functions downstream of the ligands and upstream of activated Su(H). We also uncovered a novel dx activity that suppressed N signaling downstream of N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号