首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilevel selection: the evolution of cooperation in non-kin groups   总被引:1,自引:0,他引:1  
Hamiltons (1964a, 1964b) landmark papers are rightly recognized as the formal basis for our understanding of the evolution of altruistic traits. However, Hamiltons equation as he originally expressed it is simplistic. A genetically oriented approach to studying multilevel selection can provide insights into how the terminology and assumptions used by Hamilton can be generalized. Using contextual analysis I demonstrated that Hamiltons rule actually embodies three distinct processes, group selection, individual selection, and transmission genetics or heritability. Whether an altruistic trait will evolve depends the balance of all of these factors. The genetical approach, and particularly, contextual analysis provides a means of separating these factors and examining them one at a time. Perhaps the greatest issue with Hamiltons equation is the interpretation of r. Hamilton (1964a) interpreted this as relatedness. In this paper I show that what Hamilton called relatedness is more generally interpreted as the proportion for variance among groups, and that many processes in addition to relatedness can increase the variance among groups. I also show that the evolution of an altruistic trait is driven by the ratio of the heritability at the group level to the heritability at the individual level. Under some circumstances this ratio can be greater than 1. In this situation altruism can evolve even if selection favoring selfish behavior is stronger than selection favoring altruism.  相似文献   

2.
Kin selection, reciprocity and group selection are widely regarded as evolutionary mechanisms capable of sustaining altruism among humans andother cooperative species. Our research indicates, however, that these mechanisms are only particular examples of a broader set of evolutionary possibilities.In this paper we present the results of a series of simple replicator simulations, run on variations of the 2–player prisoner's dilemma, designed to illustrate the wide range of scenarios under which altruism proves to be robust under evolutionary pressures. The set of mechanisms we explore is divided into four categories:correlation, group selection, imitation, and punishment. We argue that correlation is the core phenomenon at work in all four categories.  相似文献   

3.
The naturalistic fallacy is mentionedfrequently by evolutionary psychologists as anerroneous way of thinking about the ethicalimplications of evolved behaviors. However,evolutionary psychologists are themselvesconfused about the naturalistic fallacy and useit inappropriately to forestall legitimateethical discussion. We briefly review what thenaturalistic fallacy is and why it is misusedby evolutionary psychologists. Then we attemptto show how the ethical implications of evolvedbehaviors can be discussed constructivelywithout impeding evolutionary psychologicalresearch. A key is to show how ethicalbehaviors, in addition to unethical behaviors,can evolve by natural selection.  相似文献   

4.
Recently published theoretical results suggest that, in a sexual population, when genotypes code for phenotypes in a complex manner, it is possible for altruistic genotypes to spread through a metapopulation (i.e. through a collection of subpopulations). This spread tends to occur during periods when the environment deteriorates throughout the metapopulation. By contrast, under asexual reproduction, non-altruistic genotypes seem to be favoured, at least when subpopulations are substantial in size. The most relevant previous study makes use of Kauffman and Levin's "NK model" as a way to relate genotypes to fitness. Unfortunately, there are both conceptual and technical problems with the application of the NK model to populations that contain many different genotypes (e.g. polymorphic diploid populations with more than a few loci under selection). The present study presents a more tractable and biologically plausible model to study the causal relationship between sexual reproduction and altruism. In particular, phenotypes are determined by additive interactions among alleles at different loci in a diploid genome, with up to 200 loci under selection. In addition, subpopulations are substantially larger than those considered in the most relevant previous work. The results show that, so long as there are multiple "fitness peaks" in "phenotype space", the additive genotype-phenotype map leads to results that are similar to those from the NK model. Various parameters are manipulated in an effort to discover the determinants of altruistic and non-altruistic outcomes. The findings should facilitate further investigations, and they should help to establish the plausibility of the suggested relationship between sexual reproduction and altruism. The results also suggest that inbreeding can lead to a similar result as asexuality. That is, inbreeding seems to enhance the probability that altruistic phenotypes will be eliminated.  相似文献   

5.
Recombination is the exchange of groups of subunits between two entities. It is argued here that this process was central to the origin of life, because it allowed for the creation of useful information from a random pool of linear polymers. The length distribution of such a pool could be broadened if these polymers, such as RNA strands, have the capability of interacting and performing a cross-strand nucleophilic attack of a hydroxy group on a phosphate. Both the formation of stable secondary structures such as stem-loops and selection for self-replication can operate to push the equilibrium length distribution of the pool to longer and more catalytically proficient oligomers. There is empirical and theoretical support for these operations. Finally, in a collection of recombining linear oligomers, the advent of short recognition sequences that favor certain interactions over others, the property of a genotypic 'self' could develop, which later can shed its collective nature and be subject to Darwinian evolution. This could have given rise to true replicase enzymes, for example.  相似文献   

6.
This paper investigates the role of the concept of group heritability in group selection theory, in relation to the well-known distinction between type 1 and type 2 group selection (GS1 and GS2). I argue that group heritability is required for the operation of GS1 but not GS2, despite what a number of authors have claimed. I offer a numerical example of the evolution of altruism in a multi-group population which demonstrates that a group heritability coefficient of zero is perfectly compatible with the successful operation of group selection in the GS2 sense. A diagnosis of why group heritability has wrongly been regarded as necessary for GS2 is suggested.  相似文献   

7.
Limited migration results in kin selective pressure on helping behaviors under a wide range of ecological, demographic and life-history situations. However, such genetically determined altruistic helping can evolve only when migration is not too strong and group size is not too large. Cultural inheritance of helping behaviors may allow altruistic helping to evolve in groups of larger size because cultural transmission has the potential to markedly decrease the variance within groups and augment the variance between groups. Here, we study the co-evolution of culturally inherited altruistic helping behaviors and two alternative cultural transmission rules for such behaviors. We find that conformist transmission, where individuals within groups tend to copy prevalent cultural variants (e.g., beliefs or values), has a strong adverse effect on the evolution of culturally inherited helping traits. This finding is at variance with the commonly held view that conformist transmission is a crucial factor favoring the evolution of altruistic helping in humans. By contrast, we find that under one-to-many transmission, where individuals within groups tend to copy a “leader” (or teacher), altruistic helping can evolve in groups of any size, although the cultural transmission rule itself hitchhikes rather weakly with a selected helping trait. Our results suggest that culturally determined helping behaviors are more likely to be driven by “leaders” than by popularity, but the emergence and stability of the cultural transmission rules themselves should be driven by some extrinsic factors.  相似文献   

8.
We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion Independent of Substitution  and . In the IDIS model, the three independent processes of substitution, insertion and deletion of residues have constant rates. In order to control the genome expansion during evolution, we generalize here the IDIS   model by introducing an insertion rate which decreases when the sequence grows and tends to 0 for a maximum sequence length nmaxnmax.  相似文献   

9.
10.
I argue that images of the notion of group, in correspondence with their social and political values, shape the debate over the evolution of altruism by group selection. Important aspects of this debate are empirical, and criteria can decide among a variety of selection processes. However, leading researchers undermine or reinterpret such tests, explaining the evolution of altruism on the basis of a single extreme metaphor of ‘group’ and a single inclusive selection process. I shall argue that the extreme images for the notion of group are associated with ideologies that these researchers support or fear. Hence, the history of social and political uses of ‘group’ and ‘group selection’ can explain, at least in part, some of the empirical deficiencies of the debate, and why it has continued without resolution or dissolution.  相似文献   

11.
Perspective: repression of competition and the evolution of cooperation   总被引:10,自引:0,他引:10  
Abstract Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study.  相似文献   

12.
Inspired by the evolution of antibiotic resistance in bacteria, we have developed a model that examines the evolution of "producers" (who secrete a substance that breaks down antibiotics) and non-producers. In a previous study, we found that frequency-dependent selection could favor an intermediate frequency of producers in a single, large population. Here we develop a metapopulation model that examines the evolution of producers and non-producers. Our results indicate that in a metapopulation with many groups, each of size N, the equilibrial frequency of producers decreases with group size. Even when N is high (e.g. 150 individuals/group), however, a significant frequency of producers is still predicted. We also found that the equilibrial frequency of producers increases as the minimum numbers of producers necessary to provide protection to non-producers increases. Lastly, increasing the benefit/cost ratio (b/c) for producers increases their equilibrial frequency.  相似文献   

13.
The standard genetic code is known to be robust to translation errors and point mutations. We studied how small modifications of the standard code affect its robustness. The robustness was assessed in terms of a proper stability function, the negative variations of which correspond to a more robust code. The fraction of more robust codes obtained under small modifications appeared to be unexpectedly high, about 0.1-0.4 depending on the choice of stability function and code modifications, yet significantly lower than the corresponding fraction in the random codes (about a half). In this sense the standard code ought to be considered distinctly non-random in accordance with previous observations. The distribution of the negative variations of stability function revealed very abrupt drop beyond one standard deviation, much sharper than for Gaussian distribution or for the random codes with the same number of codons in the sets coding for amino acids or stop-codons. This behavior holds for both the standard code as a whole and its binary NRN-NYN, NWN-NSN, and NMN-NKN blocks. Previously, it has been proved that such binary block structure is necessary for the robustness of a code and is inherent to the standard genetic code. The modifications of the standard code corresponding to more robust coding may be related to the different variants of the code. These effects may also contribute to the rates of replacements of amino acids. The observed features demonstrate the joint impact of random factors and natural selection during evolution of the genetic code.  相似文献   

14.
Studying development in diverse taxa can address a central issue in evolutionary biology: how morphological diversity arises through the evolution of developmental mechanisms. Two of the best-studied developmental model organisms, the arthropod Drosophila and the nematode Caenorhabditis elegans, have been found to belong to a single protostome superclade, the Ecdysozoa. This finding suggests that a closely related ecdysozoan phylum could serve as a valuable model for studying how developmental mechanisms evolve in ways that can produce diverse body plans. Tardigrades, also called water bears, make up a phylum of microscopic ecdysozoan animals. Tardigrades share many characteristics with C. elegans and Drosophila that could make them useful laboratory models, but long-term culturing of tardigrades historically has been a challenge, and there have been few studies of tardigrade development. Here, we show that the tardigrade Hypsibius dujardini can be cultured continuously for decades and can be cryopreserved. We report that H. dujardini has a compact genome, a little smaller than that of C. elegans or Drosophila, and that sequence evolution has occurred at a typical rate. H. dujardini has a short generation time, 13–14 days at room temperature. We have found that the embryos of H. dujardini have a stereotyped cleavage pattern with asymmetric cell divisions, nuclear migrations, and cell migrations occurring in reproducible patterns. We present a cell lineage of the early embryo and an embryonic staging series. We expect that these data can serve as a platform for using H. dujardini as a model for studying the evolution of developmental mechanisms.  相似文献   

15.
A discrete-time multitype branching process model is presented for the evolution of transposable elements in haploid populations. An individual is classified as type i if it possesses i copies of the TE, i0. The general model incorporates copy-dependent selection and transposition, and recursion relations are derived for the distribution of the number of individuals of the various types. The asymptotic relative proportions of individuals of the different types is studied in the neutral case. The behavior of this equilibrium distribution is examined for various patterns of regulated transposition and deletion.  相似文献   

16.
We have formulated a very general mathematical model to analyze the evolution of transposable genetic elements in prokaryotic populations. Transposable genetic elements are DNA sequences able to replicate and insert copies of themselves at new locations in the genome. This work characterizes the equilibrium distribution of copy number under the influence of copy number-dependent selection, transposition and deletion. Our principal results concern the equilibrium distribution of copy number in response to various selective regimes. For particular transposition patterns (e.g. unregulated transposition or copy number-dependent transposition), equilibrium distributions are calculated numerically for a variety of specific selection patterns. Selection is quantified through specification of the expected number of offspring for individuals of each type, which is generally a non-increasing function of copy number, in accord with the usual evolutionary speculations.  相似文献   

17.
Two aspects of the evolution of aminoacyl-tRNA synthetases are discussed. Firstly, using recent crystal structure information on seryl-tRNA synthetase and its substrate complexes, the coevolution of the mode of recognition between seryl-tRNA synthetase and tRNAser in different organisms is reviewed. Secondly, using sequence alignments and phylogenetic trees, the early evolution of class 2 Amnoacyl-tRNA synthetases is traced. Arguments are presented to suggest that synthetases are not the oldest of protein enzymes, but survived as RNA enzymes during the early period of the evolution of protein catalysts. In this view, the relatedness of the current synthetases, as evidenced by the division into two classes with their associated subclasses, reflects the replacement of RNA synthetases by protein synthetases. This process would have been triggered by the acquisition of tRNA 3 end charging activity by early proteins capable of activating small molecules (e.g., amino acids) with ATP. If these arguments are correct, the genetic code was essentially frozen before the protein synthetases that we know today came into existence. Correspondence to: S. CusackBased on a presentation made at a workshop-Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code-held at Berkeley, CA, July 17–20, 1994  相似文献   

18.
Proponents of the standard evolutionary biology paradigm explain human “altruism” in terms of either nepotism or strict reciprocity. On that basis our underlying nature is reduced to a function of inclusive fitness: human nature has to be totally selfish or nepotistic. Proposed here are three possible paths to giving costly aid to nonrelatives, paths that are controversial because they involve assumed pleiotropic effects or group selection. One path is pleiotropic subsidies that help to extend nepotistic helping behavior from close family to nonrelatives. Another is “warfare”—if and only if warfare recurred in the Paleolithic. The third and most plausible hypothesis is based on the morally based egalitarian syndrome of prehistoric hunter-gatherers, which reduced phenotypic variation at the within-group level, increased it at the between-group level, and drastically curtailed the advantages of free riders. In an analysis consistent with the fundamental tenets of evolutionary biology, these three paths are evaluated as explanations for the evolutionary development of a rather complicated human social nature. This paper (in a series of drafts) has profited from comments by Michael Boehm, Donald T. Campbell, Bruce Knauft, Jane Lancaster, Martin Muller, Peter J. Richerson, Gary Seaman, Craig Stanford, George Williams, Edward O. Wilson, David Sloan Wilson, and two reviewers for Human Nature. Christopher Boehm is a professor of anthropology and the director of the Jane Goodall Research Center, University of Southern California. His research interests in political anthropology concern egalitarianism, feuding, warfare, and conflict resolution (humans and chimpanzees). In biosocial anthropology he is interested in altruism, group selection, and decisions.  相似文献   

19.
Summary In the present paper we distinguish between two aspects of sexual reproduction. Genetic recombination is a universal features of the sexual process. It is a primitive condition found in simple, single-celled organisms, as well as in higher plants and animals. Its function is primarily to repair genetic damage and eliminate deleterious mutations. Recombination also produces new variation, however, and this can provide the basis for adaptive evolutionary change in spatially and temporally variable environments.The other feature usually associated with sexual reproduction, differentiated male and female roles, is a derived condition, largely restricted to complex, diploid, multicellular organisms. The evolution of anisogamous gametes (small, mobile male gametes containing only genetic material, and large, relatively immobile female gametes containing both genetic material and resources for the developing offspring) not only established the fundamental basis for maleness and femaleness, it also led to an asymmetry between the sexes in the allocation of resources to mating and offspring. Whereas females allocate their resources primarily to offspring, the existence of many male gametes for each female one results in sexual selection on males to allocate their resources to traits that enhance success in competition for fertilizations. A consequence of this reproductive competition, higher variance in male than female reproductive success, results in more intense selection on males.The greater response of males to both stabilizing and directional selection constitutes an evolutionary advantage of males that partially compensates for the cost of producing them. The increased fitness contributed by sexual selection on males will complement the advantages of genetic recombination for DNA repair and elimination of deleterious mutations in any outcrossing breeding system in which males contribute only genetic material to their offspring. Higher plants and animals tend to maintain sexual reproduction in part because of the enhanced fitness of offspring resulting from sexual selection at the level of individual organisms, and in part because of the superiority of sexual populations in competition with asexual clones.  相似文献   

20.
A simple and general criterion is derived for the evolution of altruism when individuals interact in pairs. It is argued that the treatment of this problem in kin selection theory and in game theory are special cases of this general criterion.My thanks to James Crow, Carter Denniston, Lee Dugarkin, David Wilson, and an anonymous referee of this journal for helpful discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号